Alterations in membrane dynamics elicited by amphiphilic compounds are augmented in plasmenylcholine bilayers. 1991

X L Han, and R W Gross
Washington University School of Medicine, St. Louis, MO 63110.

The dynamics of binary mixtures of choline glycerophospholipids and lysophospholipids were examined by fluorescence spectroscopy to compare and contrast the effects of each subclass of lysophospholipids on plasmenylcholine and phosphatidylcholine membrane motional characteristics. The decrease in steady-state anisotropy resulting from the introduction of lysoplasmenylcholine into plasmenylcholine bilayers was 4-6-fold greater than that manifest from the introduction of lysophosphatidylcholine into phosphatidylcholine bilayers (i.e., delta r = 0.017 vs. 0.004 or 0.011 vs. 0.002 at 5 C degrees and 10 C degrees above their phase transition temperatures, respectively). Lysoplasmenylcholine was also more potent than lysophosphatidylcholine in perturbing the dynamics of membrane bilayers comprised of phosphatidylcholine as measured by alterations in the steady-state anisotropy of the diphenylhexatriene probe. Finally, lipid matrices comprised of plasmenylcholine were uniformly more susceptible to amphiphilic perturbation (mediated by lysoplasmenylcholine, lysophosphatidylcholine or long chain acylcarnitine) than matrices comprised of phosphatidylcholine. Collectively, these results demonstrate that accumulation of plasmalogen catabolites resulting from activation of plasmalogen-selective phospholipases A2 can potentiate alterations in membrane dynamics during signal transduction in plasmalogen-enriched bilayers.

UI MeSH Term Description Entries
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008246 Lysophospholipids Derivatives of PHOSPHATIDIC ACIDS that lack one of its fatty acyl chains due to its hydrolytic removal. Lysophosphatidic Acids,Lysophospholipid,Acids, Lysophosphatidic
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010955 Plasmalogens GLYCEROPHOSPHOLIPIDS in which one of the two acyl chains is attached to glycerol with an ether alkenyl linkage instead of an ester as with the other glycerophospholipids. Phosphatidal Compounds,Plasmalogen,Alkenyl Ether Phospholipids,Compounds, Phosphatidal,Ether Phospholipids, Alkenyl,Phospholipids, Alkenyl Ether
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D005454 Fluorescence Polarization Measurement of the polarization of fluorescent light from solutions or microscopic specimens. It is used to provide information concerning molecular size, shape, and conformation, molecular anisotropy, electronic energy transfer, molecular interaction, including dye and coenzyme binding, and the antigen-antibody reaction. Anisotropy, Fluorescence,Fluorescence Anisotropy,Polarization, Fluorescence,Anisotropies, Fluorescence,Fluorescence Anisotropies,Fluorescence Polarizations,Polarizations, Fluorescence
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

X L Han, and R W Gross
December 2005, The Journal of chemical physics,
X L Han, and R W Gross
November 1984, Circulation research,
X L Han, and R W Gross
June 2011, Organic & biomolecular chemistry,
X L Han, and R W Gross
May 2003, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP,
X L Han, and R W Gross
July 2005, Angewandte Chemie (International ed. in English),
X L Han, and R W Gross
February 2005, Journal of the American Chemical Society,
X L Han, and R W Gross
December 1998, Experimental cell research,
Copied contents to your clipboard!