Elevation and clearance of extracellular K+ following contusion of the rat spinal cord. 1991

M Chesler, and K Sakatani, and A Z Hassan
Department of Neurosurgery, New York University Medical Center, NY 10016.

The elevation and clearance of extracellular potassium following a standard contusion injury was studied in the thoracic spinal cord of rats. Animals were anesthetized, paralyzed, laminectomized at T9-T11, then artificially ventilated. A 10-g rod was released 5.0 cm above the cord with the dura intact. After impact, the dura-arachnoid and pial membranes were incised to allow penetration of K(+)-selective microelectrodes. Electrodes utilized a valinomycin ionophore and were double-barreled, with tip diameters of 3-5 microns. Extracellular potassium activity ([K+]o) increased with the depth of penetration. The maximum values of [K+]o occurred at depths greater than 500 microns, and remained so with time after injury. These data indicate that a dorsal-ventral gradient of [K+]o develops in spinal cords contused from the dorsal surface, with the greatest elevation of [K+]o in the gray matter. In 8 preparations, the maximum [K+]o was 65 +/- 8 mM (mean +/- S.E.M.) at 5 +/- 1 min after injury. The [K+]o peak values decayed with a half-time of 11.0 +/- 3.4 min. Compared with data available for the injured cat spinal cord, the peak [K+]o recovered relatively rapidly. Although a simple diffusion model could account for the rapid clearance of [K+]o, the persistence of dorsal-ventral [K+]o gradients could not be explained by such a model. It is postulated that secondary injury processes contributed to the persistent [K+]o gradients.

UI MeSH Term Description Entries
D008297 Male Males
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D005110 Extracellular Space Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall. Intercellular Space,Extracellular Spaces,Intercellular Spaces,Space, Extracellular,Space, Intercellular,Spaces, Extracellular,Spaces, Intercellular
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D013119 Spinal Cord Injuries Penetrating and non-penetrating injuries to the spinal cord resulting from traumatic external forces (e.g., WOUNDS, GUNSHOT; WHIPLASH INJURIES; etc.). Myelopathy, Traumatic,Injuries, Spinal Cord,Post-Traumatic Myelopathy,Spinal Cord Contusion,Spinal Cord Laceration,Spinal Cord Transection,Spinal Cord Trauma,Contusion, Spinal Cord,Contusions, Spinal Cord,Cord Contusion, Spinal,Cord Contusions, Spinal,Cord Injuries, Spinal,Cord Injury, Spinal,Cord Laceration, Spinal,Cord Lacerations, Spinal,Cord Transection, Spinal,Cord Transections, Spinal,Cord Trauma, Spinal,Cord Traumas, Spinal,Injury, Spinal Cord,Laceration, Spinal Cord,Lacerations, Spinal Cord,Myelopathies, Post-Traumatic,Myelopathies, Traumatic,Myelopathy, Post-Traumatic,Post Traumatic Myelopathy,Post-Traumatic Myelopathies,Spinal Cord Contusions,Spinal Cord Injury,Spinal Cord Lacerations,Spinal Cord Transections,Spinal Cord Traumas,Transection, Spinal Cord,Transections, Spinal Cord,Trauma, Spinal Cord,Traumas, Spinal Cord,Traumatic Myelopathies,Traumatic Myelopathy
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

M Chesler, and K Sakatani, and A Z Hassan
June 1994, Journal of neurotrauma,
M Chesler, and K Sakatani, and A Z Hassan
April 2000, Journal of neuropathology and experimental neurology,
M Chesler, and K Sakatani, and A Z Hassan
January 2001, Experimental neurology,
M Chesler, and K Sakatani, and A Z Hassan
June 2017, Bio-protocol,
M Chesler, and K Sakatani, and A Z Hassan
September 1992, Experimental neurology,
M Chesler, and K Sakatani, and A Z Hassan
December 1982, Brain research,
M Chesler, and K Sakatani, and A Z Hassan
April 1985, Experimental neurology,
M Chesler, and K Sakatani, and A Z Hassan
April 2014, Neural regeneration research,
M Chesler, and K Sakatani, and A Z Hassan
February 1977, Paraplegia,
Copied contents to your clipboard!