A polyadenylate binding protein localized to the granules of cytolytic lymphocytes induces DNA fragmentation in target cells. 1991

Q Tian, and M Streuli, and H Saito, and S F Schlossman, and P Anderson
Division of Tumor Immunology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115.

Cytolytic lymphocytes (CTLs) are characterized by their inclusion of cytoplasmic granules containing effector molecules such as perforin and the serine proteases. Here we describe the cDNA cloning and functional characterization of two related isoforms of a cytolytic granule protein designated TIA-1. Sequence analysis reveals that the 40 kd TIA-1 isoform (rp40-TIA-1) is structurally related to the poly(A)-binding proteins, possessing three RNA-binding domains and a carboxy-terminal, glutamine-rich auxiliary domain. The 15 kd TIA-1 isoform, the major species present in cytolytic granules, appears to be derived from the carboxy-terminal auxiliary domain of rp40-TIA-1 by proteolytic processing. Both natural and recombinant TIA-1 were found to induce DNA fragmentation in digitonin permeabilized thymocytes, suggesting that these molecules may be the granule components responsible for inducing apoptosis in CTL targets.

UI MeSH Term Description Entries
D007694 Killer Cells, Natural Bone marrow-derived lymphocytes that possess cytotoxic properties, classically directed against transformed and virus-infected cells. Unlike T CELLS; and B CELLS; NK CELLS are not antigen specific. The cytotoxicity of natural killer cells is determined by the collective signaling of an array of inhibitory and stimulatory CELL SURFACE RECEPTORS. A subset of T-LYMPHOCYTES referred to as NATURAL KILLER T CELLS shares some of the properties of this cell type. NK Cells,Natural Killer Cells,Cell, NK,Cell, Natural Killer,Cells, NK,Cells, Natural Killer,Killer Cell, Natural,NK Cell,Natural Killer Cell
D008247 Lysosomes A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured or undergoes MEMBRANE FUSION. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed). Autolysosome,Autolysosomes,Lysosome
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries

Related Publications

Q Tian, and M Streuli, and H Saito, and S F Schlossman, and P Anderson
April 1994, Doklady Akademii nauk,
Q Tian, and M Streuli, and H Saito, and S F Schlossman, and P Anderson
August 1988, Journal of immunology (Baltimore, Md. : 1950),
Q Tian, and M Streuli, and H Saito, and S F Schlossman, and P Anderson
January 1993, The Journal of experimental medicine,
Q Tian, and M Streuli, and H Saito, and S F Schlossman, and P Anderson
October 1988, Journal of immunology (Baltimore, Md. : 1950),
Q Tian, and M Streuli, and H Saito, and S F Schlossman, and P Anderson
June 1986, Microbial pathogenesis,
Q Tian, and M Streuli, and H Saito, and S F Schlossman, and P Anderson
January 1987, Journal of immunology (Baltimore, Md. : 1950),
Q Tian, and M Streuli, and H Saito, and S F Schlossman, and P Anderson
June 1981, Journal of immunology (Baltimore, Md. : 1950),
Q Tian, and M Streuli, and H Saito, and S F Schlossman, and P Anderson
May 1978, Biulleten' eksperimental'noi biologii i meditsiny,
Q Tian, and M Streuli, and H Saito, and S F Schlossman, and P Anderson
January 1991, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!