Force-velocity relation and myosin light chain phosphorylation in bovine coronary arterial smooth muscle. 1991

W C Miller-Hance, and K E Kamm
Department of Physiology, University of Texas Southwestern Medical Center, Dallas 75235-9040.

We have investigated in bovine left ventricular coronary arteries the relation between the biochemical regulatory event of myosin light chain phosphorylation and the mechanical events of isometric stress and isotonic shortening, under conditions of stimulation by depolarization (65 mM KCl) or receptor occupancy (2 microM 5-hydroxytryptamine [5-HT]). At rest, levels of light chain phosphorylation were 0.07 +/- 0.01 mol phosphate/mol light chain. Maximal values were significantly different for KCl (0.42 +/- 0.02 mol phosphate/mol light chain at 1 minute) and 5-HT stimulation (0.58 +/- 0.01 mol phosphate/mol light chain at 30 seconds). Increases in light chain phosphorylation preceded isometric stress development, and values remained elevated at approximately 0.35 mol phosphate/mol light chain for up to 2 hours with both KCl and 5-HT. The sites of phosphorylation were identical for KCl and 5-HT at 2 hours. Maximal stresses for each stimulus were also maintained for 2 hours. Values of maximum velocity of shortening (Vo in muscle lengths [ML]/sec), obtained from the force-velocity relation, did not change significantly between 1 minute and 2 hours with KCl (0.070 +/- 0.008 ML/sec at 1 minute and 0.056 +/- 0.007 ML/sec at 2 hours, p greater than 0.2). However, during 5-HT stimulation, Vo declined significantly (0.053 +/- 0.006 ML/sec at 1 minute and 0.032 +/- 0.003 ML/sec at 2 hours, p less than 0.025). The relation between Vo and light chain phosphorylation was different for KCl and 5-HT, indicating that factors in addition to myosin light chain phosphorylation may modulate smooth muscle shortening velocity.

UI MeSH Term Description Entries
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011189 Potassium Chloride A white crystal or crystalline powder used in BUFFERS; FERTILIZERS; and EXPLOSIVES. It can be used to replenish ELECTROLYTES and restore WATER-ELECTROLYTE BALANCE in treating HYPOKALEMIA. Slow-K,Chloride, Potassium
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003331 Coronary Vessels The veins and arteries of the HEART. Coronary Arteries,Sinus Node Artery,Coronary Veins,Arteries, Coronary,Arteries, Sinus Node,Artery, Coronary,Artery, Sinus Node,Coronary Artery,Coronary Vein,Coronary Vessel,Sinus Node Arteries,Vein, Coronary,Veins, Coronary,Vessel, Coronary,Vessels, Coronary
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001158 Arteries The vessels carrying blood away from the heart. Artery
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

W C Miller-Hance, and K E Kamm
December 1987, Circulation research,
W C Miller-Hance, and K E Kamm
May 1981, The American journal of physiology,
W C Miller-Hance, and K E Kamm
July 2000, American journal of physiology. Lung cellular and molecular physiology,
W C Miller-Hance, and K E Kamm
December 1987, The Journal of pharmacology and experimental therapeutics,
W C Miller-Hance, and K E Kamm
September 1990, The Journal of biological chemistry,
W C Miller-Hance, and K E Kamm
May 1996, Archives of biochemistry and biophysics,
W C Miller-Hance, and K E Kamm
December 1988, The Journal of general physiology,
W C Miller-Hance, and K E Kamm
September 2003, Respiratory physiology & neurobiology,
Copied contents to your clipboard!