Mechanism of ischemic mitral regurgitation. An experimental evaluation. 1991

S Kaul, and W D Spotnitz, and W P Glasheen, and D A Touchstone
Department of Medicine, University of Virginia School of Medicine, Charlottesville 22908.

BACKGROUND Papillary muscle dysfunction (PMD) has been implicated in the pathogenesis of ischemic mitral regurgitation (MR). We hypothesized that ischemic MR is not caused by PMD and/or dysfunction of the myocardial regions from where the papillary muscles arise but is related to reduction in global left ventricular (LV) function. To test this hypothesis, three groups of dogs were studied. RESULTS In group 1 dogs (n = 8), varying degrees of regional and global LV dysfunction were produced. In group 2 dogs (n = 7), the circulation to the papillary muscles was isolated from that of the rest of the LV. Dysfunction of one or both papillary muscles was produced without producing global LV dysfunction. Global LV dysfunction was also produced while keeping papillary muscle function intact. The degree of MR (assessed using contrast echocardiography) was correlated in both groups of dogs with thickening of the papillary muscles and regional and global LV function. In the group 3 dogs (n = 6), the spatial distribution of blood flow within each papillary muscle was determined during ischemia by using radiolabeled microspheres. Thickening of the papillary muscles was assessed at three different levels along their lengths and was correlated with average blood flow at these levels. In group 1 dogs, MR was noted only when global LV function was affected and its severity correlated inversely with global LV function (r = -0.84 with peak positive LV dP/dt and r = -0.95 with global LV thickening, respectively). In comparison, there was poor correlation between MR and anterior and posterior papillary muscle thickening (r = -0.38 and r = -0.49, respectively). In group 2 dogs, MR did not occur in the presence of either PMD or akinesia of the immediately adjacent LV myocardium. MR occurred only when global LV dysfunction was produced (with the papillary muscle function intact), and its severity correlated inversely with global LV function (r = -0.92 with LV dP/dt and r = -0.86 with global LV thickening, respectively). There was poor correlation between the degree of MR and thickening of the anterior and posterior papillary muscles (r = -0.24 and r = -0.38, respectively). In both groups of dogs, MR was associated with incomplete mitral leaflet closure (IMLC), and the severity of MR correlated linearly with the degree of IMLC (r = 0.98). MR was never associated with mitral valve prolapse. In the group 3 dogs, despite more inhomogeneous flow during ischemia to the anterior compared with the posterior papillary muscle, mean thickening of these muscles was similar (3 +/- 10% and 3 +/- 4%, respectively). Furthermore, there was minimal variability in thickening between different parts of the muscles (3 +/- 2% and 5 +/- 3%, respectively). CONCLUSIONS It is concluded that PMD and/or dysfunction of the immediately adjacent LV myocardium does not result in MR. MR occurs during ischemia only when global LV function is affected, even when thickening of the papillary muscles and the immediately adjacent LV remains intact. MR in this situation is related to IMLC; the greater the degree of IMLC, the greater the MR. These findings suggest that the mechanism of ischemic MR is not related to PMD. There may also be important therapeutic implications of these findings.

UI MeSH Term Description Entries
D008943 Mitral Valve The valve between the left atrium and left ventricle of the heart. Bicuspid Valve,Bicuspid Valves,Mitral Valves,Valve, Bicuspid,Valve, Mitral,Valves, Bicuspid,Valves, Mitral
D008944 Mitral Valve Insufficiency Backflow of blood from the LEFT VENTRICLE into the LEFT ATRIUM due to imperfect closure of the MITRAL VALVE. This can lead to mitral valve regurgitation. Mitral Incompetence,Mitral Regurgitation,Mitral Valve Incompetence,Mitral Insufficiency,Mitral Valve Regurgitation,Incompetence, Mitral,Incompetence, Mitral Valve,Insufficiency, Mitral,Insufficiency, Mitral Valve,Regurgitation, Mitral,Regurgitation, Mitral Valve,Valve Incompetence, Mitral,Valve Insufficiency, Mitral,Valve Regurgitation, Mitral
D010210 Papillary Muscles Conical muscular projections from the walls of the cardiac ventricles, attached to the cusps of the atrioventricular valves by the chordae tendineae. Muscle, Papillary,Muscles, Papillary,Papillary Muscle
D003327 Coronary Disease An imbalance between myocardial functional requirements and the capacity of the CORONARY VESSELS to supply sufficient blood flow. It is a form of MYOCARDIAL ISCHEMIA (insufficient blood supply to the heart muscle) caused by a decreased capacity of the coronary vessels. Coronary Heart Disease,Coronary Diseases,Coronary Heart Diseases,Disease, Coronary,Disease, Coronary Heart,Diseases, Coronary,Diseases, Coronary Heart,Heart Disease, Coronary,Heart Diseases, Coronary
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004452 Echocardiography Ultrasonic recording of the size, motion, and composition of the heart and surrounding tissues. The standard approach is transthoracic. Echocardiography, Contrast,Echocardiography, Cross-Sectional,Echocardiography, M-Mode,Echocardiography, Transthoracic,Echocardiography, Two-Dimensional,Transthoracic Echocardiography,2-D Echocardiography,2D Echocardiography,Contrast Echocardiography,Cross-Sectional Echocardiography,Echocardiography, 2-D,Echocardiography, 2D,M-Mode Echocardiography,Two-Dimensional Echocardiography,2 D Echocardiography,Cross Sectional Echocardiography,Echocardiography, 2 D,Echocardiography, Cross Sectional,Echocardiography, M Mode,Echocardiography, Two Dimensional,M Mode Echocardiography,Two Dimensional Echocardiography
D006439 Hemodynamics The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM. Hemodynamic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016277 Ventricular Function, Left The hemodynamic and electrophysiological action of the left HEART VENTRICLE. Its measurement is an important aspect of the clinical evaluation of patients with heart disease to determine the effects of the disease on cardiac performance. Left Ventricular Function,Function, Left Ventricular,Functions, Left Ventricular,Left Ventricular Functions,Ventricular Functions, Left

Related Publications

S Kaul, and W D Spotnitz, and W P Glasheen, and D A Touchstone
June 2008, Journal of cardiology,
S Kaul, and W D Spotnitz, and W P Glasheen, and D A Touchstone
July 1983, Circulation,
S Kaul, and W D Spotnitz, and W P Glasheen, and D A Touchstone
January 2013, Circulation journal : official journal of the Japanese Circulation Society,
S Kaul, and W D Spotnitz, and W P Glasheen, and D A Touchstone
March 2006, Seminars in cardiothoracic and vascular anesthesia,
S Kaul, and W D Spotnitz, and W P Glasheen, and D A Touchstone
June 1989, Circulation,
S Kaul, and W D Spotnitz, and W P Glasheen, and D A Touchstone
November 1993, The Journal of heart valve disease,
S Kaul, and W D Spotnitz, and W P Glasheen, and D A Touchstone
December 2007, Archives des maladies du coeur et des vaisseaux,
S Kaul, and W D Spotnitz, and W P Glasheen, and D A Touchstone
January 2017, Annals of cardiac anaesthesia,
S Kaul, and W D Spotnitz, and W P Glasheen, and D A Touchstone
September 2020, The Journal of thoracic and cardiovascular surgery,
S Kaul, and W D Spotnitz, and W P Glasheen, and D A Touchstone
June 2013, Journal of cardiothoracic and vascular anesthesia,
Copied contents to your clipboard!