Recent advances in imaging of brain tumors. 2009

D A Sanghvi
Department of Radiology, KEM Hospital and Seth GS Medical College, Parel, Mumbai-400 012, Maharashtra, India. darshanasanghvi1@hotmail.com

The recent advances in brain tumor imaging offer unique anatomical as well as pathophysiological information that provides new insights on brain tumors, directed at facilitating therapeutic decisions and providing information regarding prognosis. This information is presently utilized in clinical practice for initial diagnosis and noninvasive, preoperative grading of tumors, biopsy planning, surgery, and radiation portal planning, as well as, prognostication. The newer advances described in this review include magnetic resonance (MR) diffusion and diffusion tensor imaging with tractography, perfusion imaging, MR spectroscopy, and functional imaging, using the blood oxygenation level dependent (BOLD) technique. Diffusion tensor MR imaging is the only noninvasive in vivo method for mapping white matter fiber tract trajectories in the human brain. In the current clinical practice, one of the most important indications of diffusion tensor imaging (DTI) is to study the relation of a tumor to the adjacent white matter tracts. Perfusion imaging with computed tomography (CT) and magnetic resonance imaging (MRI) is an exciting new radiological technique for noninvasive evaluation of cerebral hemodynamics, in certain definite clinical settings. Cerebral perfusion imaging describes the passage of blood through the brain's vascular network. Perfusion imaging, especially with MRI has become an integral component of the complete radiological assessment of brain tumors. MR Spectroscopy (MSR) is the only noninvasive technique capable of measuring chemicals within the body. MRS distinguishes various metabolites on the basis of their slightly different chemical shifts or resonance frequencies. Functional MRI refers to the demonstration of brain function with neuroanatomic localization on a real-time basis. In patient care, functional MR imaging is primarily used in the preoperative evaluation of the relationship of a brain tumor with an eloquent cortex. The next decade will witness further sophistication of these techniques, with data available from larger studies. It is expected that imaging will continue to provide new and unique insights in neuro-oncology, which should hopefully contribute to the better management of patients with brain tumors.

UI MeSH Term Description Entries
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D002560 Cerebrovascular Circulation The circulation of blood through the BLOOD VESSELS of the BRAIN. Brain Blood Flow,Regional Cerebral Blood Flow,Cerebral Blood Flow,Cerebral Circulation,Cerebral Perfusion Pressure,Circulation, Cerebrovascular,Blood Flow, Brain,Blood Flow, Cerebral,Brain Blood Flows,Cerebral Blood Flows,Cerebral Circulations,Cerebral Perfusion Pressures,Circulation, Cerebral,Flow, Brain Blood,Flow, Cerebral Blood,Perfusion Pressure, Cerebral,Pressure, Cerebral Perfusion
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D038524 Diffusion Magnetic Resonance Imaging A diagnostic technique that incorporates the measurement of molecular diffusion (such as water or metabolites) for tissue assessment by MRI. The degree of molecular movement can be measured by changes of apparent diffusion coefficient (ADC) with time, as reflected by tissue microstructure. Diffusion MRI has been used to study BRAIN ISCHEMIA and tumor response to treatment. Magnetic Resonance Imaging, Diffusion,Diffusion MRI,Diffusion Weighted MRI,Diffusion MRIs,MRI, Diffusion Weighted

Related Publications

D A Sanghvi
September 1993, Journal of neuro-oncology,
D A Sanghvi
January 1990, Acta radiologica. Supplementum,
D A Sanghvi
January 2008, Current opinion in urology,
D A Sanghvi
August 2007, Minerva pediatrica,
D A Sanghvi
May 2015, Radiologic clinics of North America,
D A Sanghvi
November 2004, Oncology (Williston Park, N.Y.),
D A Sanghvi
January 2005, Pediatric hematology and oncology,
D A Sanghvi
January 1999, Frontiers of radiation therapy and oncology,
Copied contents to your clipboard!