Tc-99m HMPAO SPECT imaging of the central nervous system in tuberous sclerosis. 1991

K G Sieg, and J R Harty, and M Simmons, and D F Preston, and H M Erickson
Department of Psychiatry, University of Kansas Medical Center, Kansas City.

Tc-99m HMPAO was used to evaluate cerebral perfusion in a patient with tuberous sclerosis. The SPECT images demonstrated reduced HMPAO uptake in regions corresponding with MRI-confirmed locations of cortical tubers. These results indicate that the lesions are characterized by vascular perfusion deficits and support the hypothesis that cortical tubers result from developmental abnormalities of the embryonic central nervous system.

UI MeSH Term Description Entries
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008297 Male Males
D010091 Oximes Compounds that contain the radical R2C Aldoximes,Hydroxyimino Compounds,Ketoxime,Ketoximes,Oxime,Compounds, Hydroxyimino
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002560 Cerebrovascular Circulation The circulation of blood through the BLOOD VESSELS of the BRAIN. Brain Blood Flow,Regional Cerebral Blood Flow,Cerebral Blood Flow,Cerebral Circulation,Cerebral Perfusion Pressure,Circulation, Cerebrovascular,Blood Flow, Brain,Blood Flow, Cerebral,Brain Blood Flows,Cerebral Blood Flows,Cerebral Circulations,Cerebral Perfusion Pressures,Circulation, Cerebral,Flow, Brain Blood,Flow, Cerebral Blood,Perfusion Pressure, Cerebral,Pressure, Cerebral Perfusion
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014402 Tuberous Sclerosis Autosomal dominant neurocutaneous syndrome classically characterized by MENTAL RETARDATION; EPILEPSY; and skin lesions (e.g., adenoma sebaceum and hypomelanotic macules). There is, however, considerable heterogeneity in the neurologic manifestations. It is also associated with cortical tuber and HAMARTOMAS formation throughout the body, especially the heart, kidneys, and eyes. Mutations in two loci TSC1 and TSC2 that encode hamartin and tuberin, respectively, are associated with the disease. Bourneville Disease,Epiloia,Phakomatosis, Bourneville,Adenoma Sebaceum,Bourneville Phakomatosis,Bourneville Syndrome,Bourneville's Disease,Bourneville's Syndrome,Bourneville-Pringle Disease,Bourneville-Pringle's Disease,Cerebral Sclerosis,Phacomatosis, Bourneville,Sclerosis Tuberosa,Tuberose Sclerosis,Tuberous Sclerosis Complex,Bourneville Phacomatosis,Bourneville Pringle Disease,Bourneville Pringle's Disease,Bourneville-Pringles Disease,Cerebral Scleroses,Disease, Bourneville-Pringle,Disease, Bourneville-Pringle's,Sclerosis, Cerebral,Sclerosis, Tuberose,Sclerosis, Tuberous,Syndrome, Bourneville,Syndrome, Bourneville's
D015609 Organotechnetium Compounds Organic compounds that contain technetium as an integral part of the molecule. These compounds are often used as radionuclide imaging agents. Compounds, Organotechnetium
D015899 Tomography, Emission-Computed, Single-Photon A method of computed tomography that uses radionuclides which emit a single photon of a given energy. The camera is rotated 180 or 360 degrees around the patient to capture images at multiple positions along the arc. The computer is then used to reconstruct the transaxial, sagittal, and coronal images from the 3-dimensional distribution of radionuclides in the organ. The advantages of SPECT are that it can be used to observe biochemical and physiological processes as well as size and volume of the organ. The disadvantage is that, unlike positron-emission tomography where the positron-electron annihilation results in the emission of 2 photons at 180 degrees from each other, SPECT requires physical collimation to line up the photons, which results in the loss of many available photons and hence degrades the image. CAT Scan, Single-Photon Emission,CT Scan, Single-Photon Emission,Radionuclide Tomography, Single-Photon Emission-Computed,SPECT,Single-Photon Emission-Computed Tomography,Tomography, Single-Photon, Emission-Computed,Single-Photon Emission CT Scan,Single-Photon Emission Computer-Assisted Tomography,Single-Photon Emission Computerized Tomography,CAT Scan, Single Photon Emission,CT Scan, Single Photon Emission,Emission-Computed Tomography, Single-Photon,Radionuclide Tomography, Single Photon Emission Computed,Single Photon Emission CT Scan,Single Photon Emission Computed Tomography,Single Photon Emission Computer Assisted Tomography,Single Photon Emission Computerized Tomography,Tomography, Single-Photon Emission-Computed

Related Publications

K G Sieg, and J R Harty, and M Simmons, and D F Preston, and H M Erickson
January 1991, Clinical nuclear medicine,
K G Sieg, and J R Harty, and M Simmons, and D F Preston, and H M Erickson
September 1995, Clinical nuclear medicine,
K G Sieg, and J R Harty, and M Simmons, and D F Preston, and H M Erickson
October 1994, Clinical nuclear medicine,
K G Sieg, and J R Harty, and M Simmons, and D F Preston, and H M Erickson
January 1992, Clinical nuclear medicine,
K G Sieg, and J R Harty, and M Simmons, and D F Preston, and H M Erickson
June 1994, Journal of nuclear medicine : official publication, Society of Nuclear Medicine,
K G Sieg, and J R Harty, and M Simmons, and D F Preston, and H M Erickson
May 1998, Journal of nuclear medicine : official publication, Society of Nuclear Medicine,
K G Sieg, and J R Harty, and M Simmons, and D F Preston, and H M Erickson
August 2004, Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia,
K G Sieg, and J R Harty, and M Simmons, and D F Preston, and H M Erickson
December 2008, Clinical nuclear medicine,
K G Sieg, and J R Harty, and M Simmons, and D F Preston, and H M Erickson
March 1990, Clinical nuclear medicine,
K G Sieg, and J R Harty, and M Simmons, and D F Preston, and H M Erickson
March 1993, Clinical nuclear medicine,
Copied contents to your clipboard!