Cannabinoid CB1 receptors are expressed in the mouse urinary bladder and their activation modulates afferent bladder activity. 2009

J S Walczak, and T J Price, and F Cervero
McGill University, Anesthesia Research Unit, Faculty of Medicine, Faculty of Dentistry and Alan Edwards Center for Research on Pain, 3655 Promenade Sir William Osler, Montréal, Québec, Canada. jean.walczak@mcgill.ca

Pharmacological studies have indirectly shown the possible presence of cannabinoid receptors in the urinary bladder and their potential role in reducing bladder inflammatory pain. However, the localization of cannabinoid receptors in the urinary bladder remains unknown and there are no published data on the effects of cannabinoids on the sensory system of the bladder. The present study was performed to evaluate the expression of the cannabinoid CB(1) receptors in the mouse urinary bladder and to assess their co-localization with the purinergic P2X(3) receptor, a major player in the transduction of sensory events in the bladder. Also, the effect of intravesical administration of a cannabinoid agonist on the electrical activity of bladder afferent fibers was studied. The expression of mRNA coding for CB(1) receptor was assessed by reverse transcriptase-polymerase chain reaction (RT-PCR). Immunofluorescence experiments were performed to study CB(1) and P2X(3) protein expression in the bladder. The electrical activity of bladder afferent fibers was recorded using an ex vivo bladder-nerve preparation. Mechanical stimulation of the bladder was performed by a controlled slow inflation with an external pump. A bolus of a cannabinoid agonist (AZ12646915) was administered intravesically prior to a second inflation. Afferent activity was measured before and after administration of the cannabinoid compound or its vehicle. The effects of CB(1) receptor antagonist (AM251) on the AZ12646915 response were also analyzed. Cannabinoid receptor CB(1) mRNA was detected in the urinary bladder of the mouse. The protein was found in the urothelium, as well as in nerve fibers. CB(1) and P2X(3) receptors were found to be co-expressed in urothelial cells and in some nerve fibers. In addition, intravesical administration of a cannabinoid receptor agonist reduced the mechanically-evoked activity of bladder afferents in the pelvic nerve. This effect was abolished by the previous administration of the CB(1) antagonist AM251. These data demonstrate the presence of cannabinoid CB(1) receptor mRNA and the protein in the mouse urinary bladder. CB(1) and P2X(3) protein co-localization supports the hypothesis of an interaction between the cannabinoid and the purinergic systems in the transduction of sensory information in the urinary bladder. Finally, the reduction of nerve activity induced by cannabinoid-receptor activation implicates CB(1) receptors in the peripheral modulation of bladder afferent information.

UI MeSH Term Description Entries
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D010812 Physical Stimulation Act of eliciting a response from a person or organism through physical contact. Stimulation, Physical,Physical Stimulations,Stimulations, Physical
D010880 Piperidines A family of hexahydropyridines.
D011720 Pyrazoles Azoles of two nitrogens at the 1,2 positions, next to each other, in contrast with IMIDAZOLES in which they are at the 1,3 positions.
D001743 Urinary Bladder A musculomembranous sac along the URINARY TRACT. URINE flows from the KIDNEYS into the bladder via the ureters (URETER), and is held there until URINATION. Bladder,Bladder Detrusor Muscle,Detrusor Urinae,Bladder Detrusor Muscles,Bladder, Urinary,Detrusor Muscle, Bladder,Detrusor Muscles, Bladder
D002186 Cannabinoids Compounds having the cannabinoid structure. They were originally extracted from Cannabis sativa L. The most pharmacologically active constituents are TETRAHYDROCANNABINOL; CANNABINOL; and CANNABIDIOL. Cannabinoid
D005260 Female Females
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein

Related Publications

J S Walczak, and T J Price, and F Cervero
August 1996, British journal of pharmacology,
J S Walczak, and T J Price, and F Cervero
May 2008, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
J S Walczak, and T J Price, and F Cervero
August 2013, Sheng li xue bao : [Acta physiologica Sinica],
J S Walczak, and T J Price, and F Cervero
December 1997, Nature,
J S Walczak, and T J Price, and F Cervero
April 2002, Pain,
J S Walczak, and T J Price, and F Cervero
April 2008, The Journal of biological chemistry,
J S Walczak, and T J Price, and F Cervero
February 2006, European journal of pharmacology,
J S Walczak, and T J Price, and F Cervero
June 2009, Journal of applied physiology (Bethesda, Md. : 1985),
J S Walczak, and T J Price, and F Cervero
January 2023, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!