Influence of mono- and divalent ions on the formation of supported phospholipid bilayers via vesicle adsorption. 2009

Bastien Seantier, and Bengt Kasemo
Chalmers University of Technology, Chemical Physics Group, Applied Physics, FysikgrÀnd 3, Gothenburg, Sweden. bastien.seantier@cbs.cnrs.fr

We have used the quartz crystal microbalance with dissipation monitoring (QCM-D) technique to investigate how mono- and divalent cations influence the formation of supported (phospho)lipid bilayers (SPB, SLB), occurring via deposition of nanosized palmitoyloleoyl phosphatidylcholine (POPC) vesicles on a SiO2 support. This process is known to proceed via initial adsorption of intact vesicles until a critical surface coverage is reached, where the combination of vesicle-surface and vesicle-vesicle interaction causes the vesicles to rupture. New vesicles then rupture and the lipid fragments fuse until a final continuous bilayer is formed. We have explored how this process and the critical coverage are influenced by different mono- and divalent ions and ion concentrations, keeping the anions the same throughout the experiments. The same qualitative kinetics is observed for all cations. However, different ions cause quite different quantitative kinetics. When compared with monovalent ions, even very small added concentrations of divalent cations cause a strong reduction of the critical coverage, where conversion of intact, adsorbed vesicles to bilayer occurs. This bilayer promoting effect increases in the order Sr2+<Ca2+<Mg2+. Monovalent cations exhibit a much weaker but similar effect in the order Li+>Na+>K+. The results are of practical value for preparation of lipid bilayers and help shed light on the role of ions and on electrostatic effects at membrane surfaces/interfaces.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008670 Metals Electropositive chemical elements characterized by ductility, malleability, luster, and conductance of heat and electricity. They can replace the hydrogen of an acid and form bases with hydroxyl radicals. (Grant & Hackh's Chemical Dictionary, 5th ed) Metal
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D002413 Cations, Divalent Positively charged atoms, radicals or groups of atoms with a valence of plus 2, which travel to the cathode or negative pole during electrolysis. Divalent Cations
D002414 Cations, Monovalent Positively charged atoms, radicals or group of atoms with a valence of plus 1, which travel to the cathode or negative pole during electrolysis. Monovalent Cation,Cation, Monovalent,Monovalent Cations
D000327 Adsorption The adhesion of gases, liquids, or dissolved solids onto a surface. It includes adsorptive phenomena of bacteria and viruses onto surfaces as well. ABSORPTION into the substance may follow but not necessarily. Adsorptions
D013499 Surface Properties Characteristics or attributes of the outer boundaries of objects, including molecules. Properties, Surface,Property, Surface,Surface Property
D055672 Static Electricity The accumulation of an electric charge on a object Electrostatic,Electrostatics,Static Charge,Charge, Static,Charges, Static,Electricity, Static,Static Charges

Related Publications

Bastien Seantier, and Bengt Kasemo
February 2002, Journal of colloid and interface science,
Bastien Seantier, and Bengt Kasemo
February 2005, Biochimica et biophysica acta,
Bastien Seantier, and Bengt Kasemo
April 1982, Biochemistry,
Bastien Seantier, and Bengt Kasemo
May 1968, Journal of the American Oil Chemists' Society,
Bastien Seantier, and Bengt Kasemo
September 2018, The journal of physical chemistry letters,
Bastien Seantier, and Bengt Kasemo
September 2010, Langmuir : the ACS journal of surfaces and colloids,
Bastien Seantier, and Bengt Kasemo
January 1985, Biophysical journal,
Bastien Seantier, and Bengt Kasemo
October 1995, Biophysical journal,
Bastien Seantier, and Bengt Kasemo
January 1979, Journal of supramolecular structure,
Copied contents to your clipboard!