Mitochondrial translational-initiation and elongation factors in Saccharomyces cerevisiae. 1991

A Vambutas, and S H Ackerman, and A Tzagoloff
Department of Biological Sciences, Columbia University, New York, NY 10027.

C155 and E252 are respiratory-defective mutants of Saccharomyces cerevisiae, previously assigned to complementation groups G37 and G142, respectively. The following evidence suggested that both mutants were likely to have lesions in components of the mitochondrial translational machinery: C155 and E252 display a pleiotropic deficiency in cytochromes a, a3 and b; both strains are severly limited in their ability to incorporate radioactive methionine into the mitochondrial translation products and, in addition, display a tendency to loose wild-type mitochondrial DNA. This set of characteristics is commonly found in strains affected in mitochondrial protein synthesis. To identify the biochemical lesions, each mutant was transformed with a wild-type yeast genomic library and clones complemented for the respiratory defect were selected for growth on a non-fermentable substrate. Analysis of the cloned genes revealed that C155 has a mutation in a protein which has high sequence similarity to bacterial elongation factor G and that E252 has a mutation in a protein homologous to bacterial initiation factor 2. Disruption of the chromosomal copy of each gene in a wild-type haploid yeast induced a phenotype analogous to that of the original mutants, but does not affect cell viability. These results indicate that both gene products function exclusively in mitochondrial protein synthesis. Subcloning of the IFM1 gene, coding for the mitochondrial initiation factor, indicates that the amino-terminal 423 residues of the protein are sufficient to promote peptide-chain initiation in vivo.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010445 Peptide Elongation Factors Protein factors uniquely required during the elongation phase of protein synthesis. Elongation Factor,Elongation Factors, Peptide,Factor, Elongation,Factors, Peptide Elongation
D010448 Peptide Initiation Factors Protein factors uniquely required during the initiation phase of protein synthesis in GENETIC TRANSLATION. Initiation Factors,Initiation Factor,Factors, Peptide Initiation,Initiation Factors, Peptide
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

A Vambutas, and S H Ackerman, and A Tzagoloff
January 1996, Methods in enzymology,
A Vambutas, and S H Ackerman, and A Tzagoloff
August 1987, The Journal of biological chemistry,
A Vambutas, and S H Ackerman, and A Tzagoloff
February 2023, Nucleic acids research,
A Vambutas, and S H Ackerman, and A Tzagoloff
February 1990, The Journal of biological chemistry,
A Vambutas, and S H Ackerman, and A Tzagoloff
January 2004, Progress in nucleic acid research and molecular biology,
A Vambutas, and S H Ackerman, and A Tzagoloff
October 1989, Molecular and cellular biology,
A Vambutas, and S H Ackerman, and A Tzagoloff
December 2018, Proteomics,
A Vambutas, and S H Ackerman, and A Tzagoloff
July 2004, Current genetics,
Copied contents to your clipboard!