Carbohydrate ingestion during prolonged exercise: effects on metabolism and performance. 1991

A R Coggan, and E F Coyle

It is well recognized that energy from CHO oxidation is required to perform prolonged strenuous (greater than 60% VO2 max) exercise. During the past 25 years, the concept has developed that muscle glycogen is the predominant source of CHO energy for strenuous exercise; as a result, the potential energy contribution of blood glucose has been somewhat overlooked. Although during the first hour of exercise at 70-75% VO2max, most of the CHO energy is derived from muscle glycogen, it is clear that the contribution of muscle glycogen decreases over time as muscle glycogen stores become depleted, and that blood glucose uptake and oxidation increase progressively to maintain CHO oxidation (Fig. 1.7). We theorize that over the course of several hours of strenuous exercise (i.e., 3-4 h), blood glucose and muscle glycogen contribute equal amounts of CHO energy, making blood glucose at least as important as muscle glycogen as a CHO source. During the latter stages of exercise, blood glucose can potentially provide all of the CHO energy needed to support exercise at 70-75% VO2max if blood glucose availability is maintained. During prolonged exercise in the fasted state, however, blood glucose concentration often decreases owing to depletion of liver glycogen stores. This relative hypoglycemia, although only occasionally severe enough to result in fatigue from neuroglucopenia, causes fatigue by limiting blood glucose (and therefore total CHO) oxidation. The primary purpose of CHO ingestion during continuous strenuous exercise is to maintain blood glucose concentration and thus CHO oxidation and exercise tolerance during the latter stages of prolonged exercise. CHO feeding throughout continuous exercise does not alter muscle glycogen use. It appears that blood glucose must be supplemented at a rate of approximately 1 g/min late in exercise. Feeding sufficient amounts of CHO 30 minutes before fatigue is as effective as ingesting CHO throughout exercise in maintaining blood glucose availability and CHO oxidation late in exercise. Most persons should not wait, however, until they are fatigued before ingesting CHO, because it appears that glucose entry into the blood does not occur rapidly enough at this time. It also may be advantageous to ingest CHO throughout intermittent or low-intensity exercise rather than toward the end of exercise because of the potential for glycogen synthesis in resting muscle fibers. Finally, CHO ingestion during prolonged strenuous exercise delays by approximately 45 minutes but does not prevent fatigue, suggesting that factors other than CHO availability eventually cause fatigue.

UI MeSH Term Description Entries
D008112 Liver Glycogen Glycogen stored in the liver. (Dorland, 28th ed) Hepatic Glycogen,Glycogen, Hepatic,Glycogen, Liver
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010807 Physical Endurance The time span between the beginning of physical activity by an individual and the termination because of exhaustion. Endurance, Physical,Physical Stamina,Stamina, Physical
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D004040 Dietary Carbohydrates Carbohydrates present in food comprising digestible sugars and starches and indigestible cellulose and other dietary fibers. The former are the major source of energy. The sugars are in beet and cane sugar, fruits, honey, sweet corn, corn syrup, milk and milk products, etc.; the starches are in cereal grains, legumes (FABACEAE), tubers, etc. (From Claudio & Lagua, Nutrition and Diet Therapy Dictionary, 3d ed, p32, p277) Carbohydrates, Dietary,Carbohydrate, Dietary,Dietary Carbohydrate
D005221 Fatigue The state of weariness following a period of exertion, mental or physical, characterized by a decreased capacity for work and reduced efficiency to respond to stimuli. Lassitude
D006003 Glycogen
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001642 Bicycling The use of a bicycle for transportation or recreation. It does not include the use of a bicycle in studying the body's response to physical exertion (BICYCLE ERGOMETRY TEST see EXERCISE TEST).

Related Publications

A R Coggan, and E F Coyle
December 2009, Journal of sports sciences,
A R Coggan, and E F Coyle
May 1995, Applied human science : journal of physiological anthropology,
A R Coggan, and E F Coyle
January 2004, Journal of sports sciences,
A R Coggan, and E F Coyle
May 2005, The Indian journal of medical research,
A R Coggan, and E F Coyle
February 1990, International journal of sports medicine,
A R Coggan, and E F Coyle
December 2000, Journal of applied physiology (Bethesda, Md. : 1985),
A R Coggan, and E F Coyle
January 1983, European journal of applied physiology and occupational physiology,
A R Coggan, and E F Coyle
August 1973, Pflugers Archiv : European journal of physiology,
A R Coggan, and E F Coyle
January 2016, Journal of the International Society of Sports Nutrition,
Copied contents to your clipboard!