Cofilin dissociates Arp2/3 complex and branches from actin filaments. 2009

Chikio Chan, and Christopher C Beltzner, and Thomas D Pollard
Department of Molecular Cellular, Yale University, PO Box 208103, New Haven, CT 06520-8103, USA.

BACKGROUND Actin-based cellular motility requires spatially and temporally coordinated remodeling of a network of branched actin filaments. This study investigates how cofilin and Arp2/3 complex, two main players in the dendritic nucleation model, interact to produce sharp spatial transitions between densely branched filaments and long, unbranched filaments. RESULTS We found that cofilin binding reduces both the affinity of actin filaments for Arp2/3 complex and the stability of branches. We used fluorescence spectroscopy to measure the kinetics of cofilin association with filaments and the resulting dissociation of Arp2/3 complex and TIRF microscopy to visualize filament severing and the loss of actin filament branches. Cofilin severs filaments optimally when few actin subunits are occupied but dissociates branches rapidly only at higher occupancies. Effective debranching is nevertheless achieved, as a result of cooperative binding and reduced affinity of Arp2/3 complex for the filament, at cofilin concentrations below those required for direct competition. CONCLUSIONS Cofilin rapidly dissociates Arp2/3 complex and branches by direct competition for binding sites on the actin filament and by propagation of structural changes in the actin filament that reduce affinity for Arp2/3 complex.

UI MeSH Term Description Entries
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012568 Schizosaccharomyces A genus of ascomycetous fungi of the family Schizosaccharomycetaceae, order Schizosaccharomycetales. Fission Yeast,Schizosaccharomyces malidevorans,Schizosaccharomyces pombe,Yeast, Fission,S pombe,Fission Yeasts
D051339 Actin Depolymerizing Factors A family of low MOLECULAR WEIGHT actin-binding proteins found throughout eukaryotes. They remodel the actin CYTOSKELETON by severing ACTIN FILAMENTS and increasing the rate of monomer dissociation. Actin Depolymerizing Protein,Cofilin,Cofilins,ADF Proteins (Actin Depolymerizing Factors),Actin Depolymerizing Proteins,Cofilin Proteins,Depolymerizing Factors, Actin,Depolymerizing Protein, Actin,Depolymerizing Proteins, Actin,Protein, Actin Depolymerizing
D051376 Actin-Related Protein 2-3 Complex A complex of seven proteins including ARP2 PROTEIN and ARP3 PROTEIN that plays an essential role in maintenance and assembly of the CYTOSKELETON. Arp2-3 complex binds WASP PROTEIN and existing ACTIN FILAMENTS, and it nucleates the formation of new branch point filaments. Arp2-3 Complex,Arp2-3 Protein Complex,Actin Related Protein 2 3 Complex,Arp2 3 Complex,Arp2 3 Protein Complex
D029702 Schizosaccharomyces pombe Proteins Proteins obtained from the species Schizosaccharomyces pombe. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes. Fission Yeast Proteins,S pombe Proteins

Related Publications

Chikio Chan, and Christopher C Beltzner, and Thomas D Pollard
March 2001, Nature cell biology,
Chikio Chan, and Christopher C Beltzner, and Thomas D Pollard
August 2002, Current biology : CB,
Chikio Chan, and Christopher C Beltzner, and Thomas D Pollard
January 2024, Science advances,
Chikio Chan, and Christopher C Beltzner, and Thomas D Pollard
February 2024, Biochemical Society transactions,
Chikio Chan, and Christopher C Beltzner, and Thomas D Pollard
April 1998, Molecular biology of the cell,
Chikio Chan, and Christopher C Beltzner, and Thomas D Pollard
January 2002, Current biology : CB,
Chikio Chan, and Christopher C Beltzner, and Thomas D Pollard
June 2020, Proceedings of the National Academy of Sciences of the United States of America,
Chikio Chan, and Christopher C Beltzner, and Thomas D Pollard
June 2015, Current biology : CB,
Chikio Chan, and Christopher C Beltzner, and Thomas D Pollard
January 2014, European journal of cell biology,
Chikio Chan, and Christopher C Beltzner, and Thomas D Pollard
June 2013, Current biology : CB,
Copied contents to your clipboard!