ATP-mediated activation of the NADPH oxidase DUOX1 mediates airway epithelial responses to bacterial stimuli. 2009

Agnes W Boots, and Milena Hristova, and David I Kasahara, and Guido R M M Haenen, and Aalt Bast, and Albert van der Vliet
Department of Pathology, University of Vermont, Burlington, Vermont 05405, USA.

Activation of the NADPH oxidase homolog dual oxidase 1 (DUOX1) within the airway epithelium represents a key mechanism of innate airway host defense, through enhanced production of H2O2, which mediates cellular signaling pathways that regulate the production of various inflammatory mediators. Production of the CXC chemokine interleukin (IL)-8/CXCL8 forms a common epithelial response to many diverse stimuli, including bacterial and viral triggers, environmental oxidants, and other biological mediators, suggesting the potential involvement of a common signaling pathway that may involve DUOX1-dependent H2O2 production. Following previous reports showing that DUOX1 is activated by extracellular ATP and purinergic receptor stimulation, this study demonstrates that airway epithelial IL-8 production in response to several bacterial stimuli involves ATP release and DUOX1 activation. ATP-mediated DUOX1 activation resulted in the activation of ERK1/2 and NF-kappaB pathways, which was associated with epidermal growth factor receptor (EGFR) ligand shedding by ADAM17 (a disintegrin and metalloproteinase-17). Although ATP-mediated ADAM17 activation and IL-8 release were not prevented by extracellular H2O2 scavenging by catalase, these responses were attenuated by intracellular scavengers of H2O2 or related oxidants, suggesting an intracellular redox signaling mechanism. Both ADAM17 activation and IL-8 release were suppressed by inhibitors of EGFR/ERK1/2 signaling, which can regulate ADAM17 activity by serine/threonine phosphorylation. Collectively, our results indicate that ATP-mediated DUOX1 activation represents a common response mechanism to several environmental stimuli, involving H2O2-dependent EGFR/ERK activation, ADAM17 activation, and EGFR ligand shedding, leading to amplified epithelial EGFR activation and IL-8 production.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D001980 Bronchi The larger air passages of the lungs arising from the terminal bifurcation of the TRACHEA. They include the largest two primary bronchi which branch out into secondary bronchi, and tertiary bronchi which extend into BRONCHIOLES and PULMONARY ALVEOLI. Primary Bronchi,Primary Bronchus,Secondary Bronchi,Secondary Bronchus,Tertiary Bronchi,Tertiary Bronchus,Bronchi, Primary,Bronchi, Secondary,Bronchi, Tertiary,Bronchus,Bronchus, Primary,Bronchus, Secondary,Bronchus, Tertiary
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D000072198 ADAM17 Protein A disintegrin and metalloproteinase domain-containing protein that cleaves the membrane-bound precursor of TUMOR NECROSIS FACTOR-ALPHA to its mature form. It cleaves several other CELL SURFACE PROTEINS, including INTERLEUKIN-1 RECEPTOR TYPE II; TRANSFORMING GROWTH FACTOR ALPHA; L-SELECTIN; MUCIN-1; and AMYLOID BETA-PROTEIN PRECURSOR. It can also function as an activator of the Notch signaling pathway by mediating the cleavage of NOTCH RECEPTORS. ADAM-17,ADAM-17 Protein,CD156b Antigen,Disintegrin and Metalloproteinase Domain-Containing Protein 17,TACA (Enzyme),TACE (Enzyme),TNF-alpha Convertase,TNF-alpha Converting Enzyme,Tumor Necrosis Factor Alpha Convertase,Tumor Necrosis Factor-alpha Convertase,Tumor Necrosis Factor-alpha Converting Enzyme,ADAM 17 Protein,Antigen, CD156b,Convertase, TNF-alpha,Disintegrin and Metalloproteinase Domain Containing Protein 17,TNF alpha Convertase,TNF alpha Converting Enzyme,Tumor Necrosis Factor alpha Converting Enzyme
D000074623 Dual Oxidases NADPH oxidases that contain two additional EF HAND MOTIFS and an N-terminal PEROXIDASE domain. They are expressed by THYROCYTES and EPITHELIAL CELLS of the kidney, liver, trachea, lung, and glandular tissues such as the testis, pancreas, and prostate. They are critical for the activity of THYROID PEROXIDASE and play a role in the production of thyroid hormones; they may also have antimicrobial activity through the generation of REACTIVE OXYGEN SPECIES. Dual Oxidase,DUOX1,DUOX2,Dual Oxidase 1,Dual Oxidase 2,Duox Proteins,NADPH Thyroid Oxidase 2,Thyroid Oxidase 2,Oxidase 1, Dual,Oxidase 2, Dual,Oxidase 2, Thyroid,Oxidase, Dual,Oxidases, Dual,Proteins, Duox
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2

Related Publications

Agnes W Boots, and Milena Hristova, and David I Kasahara, and Guido R M M Haenen, and Aalt Bast, and Albert van der Vliet
September 2009, Nature medicine,
Agnes W Boots, and Milena Hristova, and David I Kasahara, and Guido R M M Haenen, and Aalt Bast, and Albert van der Vliet
November 2016, JCI insight,
Agnes W Boots, and Milena Hristova, and David I Kasahara, and Guido R M M Haenen, and Aalt Bast, and Albert van der Vliet
August 2010, Science signaling,
Agnes W Boots, and Milena Hristova, and David I Kasahara, and Guido R M M Haenen, and Aalt Bast, and Albert van der Vliet
February 2007, The Journal of biological chemistry,
Agnes W Boots, and Milena Hristova, and David I Kasahara, and Guido R M M Haenen, and Aalt Bast, and Albert van der Vliet
September 2011, Pflugers Archiv : European journal of physiology,
Agnes W Boots, and Milena Hristova, and David I Kasahara, and Guido R M M Haenen, and Aalt Bast, and Albert van der Vliet
December 2022, American journal of physiology. Renal physiology,
Agnes W Boots, and Milena Hristova, and David I Kasahara, and Guido R M M Haenen, and Aalt Bast, and Albert van der Vliet
May 2016, The Journal of allergy and clinical immunology,
Agnes W Boots, and Milena Hristova, and David I Kasahara, and Guido R M M Haenen, and Aalt Bast, and Albert van der Vliet
August 2009, Science signaling,
Agnes W Boots, and Milena Hristova, and David I Kasahara, and Guido R M M Haenen, and Aalt Bast, and Albert van der Vliet
January 2013, PloS one,
Agnes W Boots, and Milena Hristova, and David I Kasahara, and Guido R M M Haenen, and Aalt Bast, and Albert van der Vliet
August 2004, The Journal of biological chemistry,
Copied contents to your clipboard!