Hydrogen peroxide production in chronic granulomatous disease. A cytochemical study of reduced pyridine nucleotide oxidases. 1977

R T Briggs, and M L Karnovsky, and M J Karnovsky

The ability of polymorphonuclear leukocytes (PMN) to produce H(2)O(2) in response to phagocytic stimulation was examined cytochemically using leukocytes from normal individuals and patients with chronic granulomatous disease (CGD). Normal PMN oxidized diaminobenzidine within the phagocytic vacuole by a reaction dependent upon endogenous H(2)O(2) and myeloperoxidase. CGD PMN failed to oxidize diaminobenzidine, which is consistent with the biochemical data showing a lack of H(2)O(2)-generating capacity. A plasma membrane enzyme (oxidase) activated by phagocytosis is capable of H(2)O(2) production in PMN. The localization of this oxidase activity was explored in CGD PMN using a cytochemical technique specific for H(2)O(2). The enzyme activity is stimulated by exogenous NADH, but not NADPH. Reaction product formation, indicative of activity of the oxidase, is dependent upon precipitation of cerium ions by the enzymatically generated H(2)O(2). The advantage of this approach is that enzyme activity of individual cells can be assessed, allowing determination of numbers of reactive cells in the population and their relative degrees of reactivity. NADH oxidase was found to be active both on the plasma membrane and within the phagocytic vacuoles of control PMN, whereas those cells from three CGD patients showed greatly reduced activity in both these sites. Assessment of the reactivity of individual cells showed the number of cells with oxidase activity in CGD to be significantly reduced when compared to control values. Additionally, of those cells that do react, a higher percentage of them are only weakly reactive. Omission of NADH from the incubation medium reduced the percentage of control cells showing enzyme activity but had no effect on CGD PMN, implying that the enzyme is not saturated with substrate in control cells, but in CGD the diminished enzyme is fully saturated. The defect may lie in the fact that in CGD patients there are fewer cells capable of peroxide generation, and a majority of these reactive cells produce only reduced amounts of this bactericidal agent.

UI MeSH Term Description Entries
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D010585 Phagocyte Bactericidal Dysfunction Disorders in which phagocytic cells cannot kill ingested bacteria; characterized by frequent recurring infection with formulation of granulomas. Bactericidal Dysfunction, Phagocyte,Bactericidal Dysfunctions, Phagocyte,Dysfunction, Phagocyte Bactericidal,Dysfunctions, Phagocyte Bactericidal,Phagocyte Bactericidal Dysfunctions
D010587 Phagocytosis The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES). Phagocytoses
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D006105 Granulomatous Disease, Chronic A defect of leukocyte function in which phagocytic cells ingest but fail to digest bacteria, resulting in recurring bacterial infections with granuloma formation. When chronic granulomatous disease is caused by mutations in the CYBB gene, the condition is inherited in an X-linked recessive pattern. When chronic granulomatous disease is caused by CYBA, NCF1, NCF2, or NCF4 gene mutations, the condition is inherited in an autosomal recessive pattern. Autosomal Recessive Chronic Granulomatous Disease,Chronic Granulomatous Disease,Chronic Granulomatous Disease, Atypical,Chronic Granulomatous Disease, X-Linked,Cytochrome B-Negative Granulomatous Disease, Chronic, X-Linked,Cytochrome B-Positive Granulomatous Disease, Chronic, X-Linked,Granulomatous Disease, Chronic, X-Linked,Granulomatous Disease, Chronic, X-Linked, Variant,X-Linked Chronic Granulomatous Disease,Chronic Granulomatous Disease, X Linked,Chronic Granulomatous Diseases,Granulomatous Diseases, Chronic,X Linked Chronic Granulomatous Disease
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry

Related Publications

R T Briggs, and M L Karnovsky, and M J Karnovsky
May 1977, The Journal of protozoology,
R T Briggs, and M L Karnovsky, and M J Karnovsky
January 2005, Journal of immunology (Baltimore, Md. : 1950),
R T Briggs, and M L Karnovsky, and M J Karnovsky
January 1982, Plant physiology,
R T Briggs, and M L Karnovsky, and M J Karnovsky
June 1984, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
R T Briggs, and M L Karnovsky, and M J Karnovsky
October 2012, Biochimica et biophysica acta,
R T Briggs, and M L Karnovsky, and M J Karnovsky
February 1980, Analytical biochemistry,
R T Briggs, and M L Karnovsky, and M J Karnovsky
May 1957, The Journal of biological chemistry,
R T Briggs, and M L Karnovsky, and M J Karnovsky
February 2014, Biochimica et biophysica acta,
Copied contents to your clipboard!