Bacillus subtilis CheN, a homolog of CheA, the central regulator of chemotaxis in Escherichia coli. 1991

D K Fuhrer, and G W Ordal
Department of Biochemistry, College of Medicine, University of Illinois, Urbana 61801.

The Bacillus subtilis cheN gene was isolated, sequenced, and expressed. It encodes a large negatively charged protein with a molecular weight of approximately 74,000. The predicted protein sequence has 33 to 34% identity with the Escherichia coli and Salmonella typhimurium CheA and Myxococcus xanthus FrzE sequences. These proteins are found to autophosphorylate and are members of the same histidine kinase signal modulating family. CheN has several conserved regions (including the histidine that is phosphorylated in CheA) that coincide with other autophosphorylated signal transducers. A null mutant is defective in attractant-induced methanol formation and shows no behavioral response to chemoeffectors. These results imply that in B. subtilis the mechanism of chemotaxis involves phosphoryl transfer similar to that in E. coli. However, the CheN null mutant mostly tumbles, whereas CheA mutants swim smoothly, and only in B. subtilis does excitation lead to methyl transfer and methanol formation. Thus, the overall mechanism of chemotaxis is different in the two organisms.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002630 Chemotactic Factors Chemical substances that attract or repel cells. The concept denotes especially those factors released as a result of tissue injury, microbial invasion, or immunologic activity, that attract LEUKOCYTES; MACROPHAGES; or other cells to the site of infection or insult. Chemoattractant,Chemotactic Factor,Chemotaxin,Chemotaxins,Cytotaxinogens,Cytotaxins,Macrophage Chemotactic Factor,Chemoattractants,Chemotactic Factors, Macrophage,Macrophage Chemotactic Factors,Chemotactic Factor, Macrophage,Factor, Chemotactic,Factor, Macrophage Chemotactic
D002633 Chemotaxis The movement of cells or organisms toward or away from a substance in response to its concentration gradient. Haptotaxis
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests
D000071677 Histidine Kinase A member of the transferase superfamily of proteins. In the activated state, protein-histidine kinase autophosphorylates at a histidine residue, subsequently transferring high-energy phosphoryl groups to an aspartate residue of the response-regulator domain, which results in a conformational shift in the effector domain. Histidine kinases mediate signal transduction in a wide range of processes involving cellular adaptation to environmental stress. Histidine Protein Kinase,Histone H4 Histidine Kinase,Protein Histidine Pros-Kinase,Protein Kinase (Histidine), Pros-Kinase,Protein-Histidine Kinase,Protein-Histidine Pros-Kinase,Protein-Histidine Tele-Kinase,Sensor Histidine Kinase,Histidine Kinase, Sensor,Histidine Pros-Kinase, Protein,Kinase, Histidine,Kinase, Histidine Protein,Kinase, Protein-Histidine,Kinase, Sensor Histidine,Pros-Kinase, Protein Histidine,Pros-Kinase, Protein-Histidine,Protein Histidine Kinase,Protein Histidine Pros Kinase,Protein Histidine Tele Kinase,Protein Kinase, Histidine,Tele-Kinase, Protein-Histidine
D000072236 Methyl-Accepting Chemotaxis Proteins Transmembrane sensor receptor proteins that are central components of the chemotactic systems of a number of motile bacterial species which include ESCHERICHIA COLI and SALMONELLA TYPHIMURIUM. Methyl-accepting chemotaxis proteins derive their name from a sensory adaptation process which involves methylation at several glutamyl residues in their cytoplasmic domain. Methyl-accepting chemotaxis proteins trigger chemotactic responses across spatial chemical gradients, causing organisms to move either toward favorable stimuli or away from toxic ones. Methyl-Accepting Chemotaxis Protein,MACP-I,MACP-II,Methyl Accepting Chemotaxis Protein 1,Methyl Accepting Chemotaxis Protein 2,Methyl Accepting Chemotaxis Protein 3,Methyl-Accepting Chemotaxis Protein I,Methyl-Accepting Chemotaxis Protein II,Methyl-Accepting Chemotaxis Protein III,Chemotaxis Protein, Methyl-Accepting,Chemotaxis Proteins, Methyl-Accepting,Methyl Accepting Chemotaxis Protein,Methyl Accepting Chemotaxis Protein I,Methyl Accepting Chemotaxis Protein II,Methyl Accepting Chemotaxis Protein III,Methyl Accepting Chemotaxis Proteins,Protein, Methyl-Accepting Chemotaxis,Proteins, Methyl-Accepting Chemotaxis

Related Publications

D K Fuhrer, and G W Ordal
January 1992, Molecular microbiology,
D K Fuhrer, and G W Ordal
September 1997, Microbiology (Reading, England),
D K Fuhrer, and G W Ordal
January 2014, Annual review of microbiology,
D K Fuhrer, and G W Ordal
May 1976, Journal of bacteriology,
Copied contents to your clipboard!