Influence of apolipoprotein E polymorphism on apolipoprotein B-100 metabolism in normolipemic subjects. 1991

T Demant, and D Bedford, and C J Packard, and J Shepherd
Institute of Clinical Biochemistry, Glasgow Royal Infirmary, Scotland.

This study examined apolipoprotein (apo) B metabolism in normolipemic subjects homozygous for the apo E2 (n = 4), apo E3 (n = 5), or apo E4 (n = 5) phenotype. Radioiodinated very low density lipoprotein (VLDL1) (ultracentrifuge flotation rate [Sf] 60-400) and VLDL2 (Sf 20-60) were injected into volunteers and the conversion of apo B was followed through intermediate density lipoprotein (IDL) to low density lipoprotein (LDL). Subjects homozygous for E3 converted approximately 50% of LVDL2 to LDL, the remainder being lost by direct catabolism. Those with the E2 phenotype produced less VLDL1, but converted more of it to VLDL2 (compared to E3 subjects). They displayed a characteristic dyslipidemia with the presence of slowly catabolized VLDL1 and VLDL2 remnants. LDL levels were low owing to increased direct catabolism of VLDL2 and IDL and a reduced efficiency of delipidation; only 25% of VLDL2 apo B was directed to LDL production. In contrast, E4 subjects converted more VLDL2 apo B to LDL than E3 subjects. About 70% of VLDL2 apo B was found in LDL; direct catabolism of VLDL and IDL was reduced as was the fractional catabolic rate of LDL (0.2 vs. 0.26 in E3 subjects). These changes in the VLDL----IDL----LDL metabolic cascade can in part be explained by alterations in hepatic LDL receptors with E2 subjects having higher and E4 subjects lower activities than those in E3 homozygotes.

UI MeSH Term Description Entries
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D008079 Lipoproteins, VLDL A class of lipoproteins of very light (0.93-1.006 g/ml) large size (30-80 nm) particles with a core composed mainly of TRIGLYCERIDES and a surface monolayer of PHOSPHOLIPIDS and CHOLESTEROL into which are imbedded the apolipoproteins B, E, and C. VLDL facilitates the transport of endogenously made triglycerides to extrahepatic tissues. As triglycerides and Apo C are removed, VLDL is converted to INTERMEDIATE-DENSITY LIPOPROTEINS, then to LOW-DENSITY LIPOPROTEINS from which cholesterol is delivered to the extrahepatic tissues. Pre-beta-Lipoprotein,Prebeta-Lipoprotein,Prebeta-Lipoproteins,Very Low Density Lipoprotein,Very-Low-Density Lipoprotein,Very-Low-Density Lipoproteins,Lipoprotein VLDL II,Lipoproteins, VLDL I,Lipoproteins, VLDL III,Lipoproteins, VLDL1,Lipoproteins, VLDL2,Lipoproteins, VLDL3,Pre-beta-Lipoproteins,Lipoprotein, Very-Low-Density,Lipoproteins, Very-Low-Density,Pre beta Lipoprotein,Pre beta Lipoproteins,Prebeta Lipoprotein,Prebeta Lipoproteins,VLDL Lipoproteins,VLDL1 Lipoproteins,VLDL2 Lipoproteins,VLDL3 Lipoproteins,Very Low Density Lipoproteins
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D011110 Polymorphism, Genetic The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level. Gene Polymorphism,Genetic Polymorphism,Polymorphism (Genetics),Genetic Polymorphisms,Gene Polymorphisms,Polymorphism, Gene,Polymorphisms (Genetics),Polymorphisms, Gene,Polymorphisms, Genetic
D011973 Receptors, LDL Receptors on the plasma membrane of nonhepatic cells that specifically bind LDL. The receptors are localized in specialized regions called coated pits. Hypercholesteremia is caused by an allelic genetic defect of three types: 1, receptors do not bind to LDL; 2, there is reduced binding of LDL; and 3, there is normal binding but no internalization of LDL. In consequence, entry of cholesterol esters into the cell is impaired and the intracellular feedback by cholesterol on 3-hydroxy-3-methylglutaryl CoA reductase is lacking. LDL Receptors,Lipoprotein LDL Receptors,Receptors, Low Density Lipoprotein,LDL Receptor,LDL Receptors, Lipoprotein,Low Density Lipoprotein Receptor,Low Density Lipoprotein Receptors,Receptors, Lipoprotein, LDL,Receptor, LDL,Receptors, Lipoprotein LDL
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D005260 Female Females
D006720 Homozygote An individual in which both alleles at a given locus are identical. Homozygotes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

T Demant, and D Bedford, and C J Packard, and J Shepherd
August 2010, Journal of lipid research,
T Demant, and D Bedford, and C J Packard, and J Shepherd
November 2003, Journal of lipid research,
T Demant, and D Bedford, and C J Packard, and J Shepherd
January 1988, Atherosclerosis,
T Demant, and D Bedford, and C J Packard, and J Shepherd
January 1988, American journal of human genetics,
T Demant, and D Bedford, and C J Packard, and J Shepherd
April 1993, The Clinical investigator,
T Demant, and D Bedford, and C J Packard, and J Shepherd
January 1982, Journal of postgraduate medicine,
T Demant, and D Bedford, and C J Packard, and J Shepherd
January 1986, Advances in experimental medicine and biology,
T Demant, and D Bedford, and C J Packard, and J Shepherd
February 2012, Arteriosclerosis, thrombosis, and vascular biology,
T Demant, and D Bedford, and C J Packard, and J Shepherd
November 1984, Journal of lipid research,
T Demant, and D Bedford, and C J Packard, and J Shepherd
April 2006, Nutrition, metabolism, and cardiovascular diseases : NMCD,
Copied contents to your clipboard!