Effect of denervation on the expression of two glucose transporter isoforms in rat hindlimb muscle. 1991

N E Block, and D R Menick, and K A Robinson, and M G Buse
Division of Endocrinology, Metabolism and Nutrition, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston 29425.

Denervation rapidly (within 24 h) induces insulin resistance of several insulin-responsive pathways in skeletal muscle, including glucose transport; resistance is usually maximal by 3 d. We examined the effect of denervation on the expression of two glucose transporter isoforms (GLUT-1 and GLUT-4) in rat hindlimb muscle; GLUT-4 is the predominant species in muscle. 1 d postdenervation, GLUT-1 and GLUT-4 mRNA and protein concentrations were unchanged. 3 and 7 d postdenervation, GLUT-4 mRNA and protein (per microgram DNA) were decreased by 50%. The minor isoform, GLUT-1 mRNA increased by approximately 500 and approximately 100%, respectively, on days 3 and 7 while GLUT-1 protein increased by approximately 60 and approximately 100%. The data suggest that the insulin resistance of glucose transport early after denervation does not reflect a decrease in total glucose transporter number; however, decreased GLUT-4 expression may contribute to its increased severity after 3 d. Parallel decreases in GLUT-4 mRNA and GLUT-4 protein postdenervation are consistent with pretranslational regulation; GLUT-1 expression may be regulated pre- and posttranslationally. The cell type(s) which overexpress GLUT-1 postdenervation need to be identified. Nervous stimuli and/or contractile activity may modulate the expression of GLUT-1 and GLUT-4 in skeletal muscle tissue.

UI MeSH Term Description Entries
D008297 Male Males
D009004 Monosaccharide Transport Proteins A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES. Hexose Transport Proteins,Band 4.5 Preactin,Erythrocyte Band 4.5 Protein,Glucose Transport-Inducing Protein,Hexose Transporter,4.5 Preactin, Band,Glucose Transport Inducing Protein,Preactin, Band 4.5,Proteins, Monosaccharide Transport,Transport Proteins, Hexose,Transport Proteins, Monosaccharide,Transport-Inducing Protein, Glucose
D009121 Muscle Denervation The resection or removal of the innervation of a muscle or muscle tissue. Denervation, Muscle,Denervations, Muscle,Muscle Denervations
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D006614 Hindlimb Either of two extremities of four-footed non-primate land animals. It usually consists of a FEMUR; TIBIA; and FIBULA; tarsals; METATARSALS; and TOES. (From Storer et al., General Zoology, 6th ed, p73) Hindlimbs
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015151 Immunoblotting Immunologic method used for detecting or quantifying immunoreactive substances. The substance is identified by first immobilizing it by blotting onto a membrane and then tagging it with labeled antibodies. Dot Immunoblotting,Electroimmunoblotting,Immunoelectroblotting,Reverse Immunoblotting,Immunoblotting, Dot,Immunoblotting, Reverse,Dot Immunoblottings,Electroimmunoblottings,Immunoblottings,Immunoblottings, Dot,Immunoblottings, Reverse,Immunoelectroblottings,Reverse Immunoblottings
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

N E Block, and D R Menick, and K A Robinson, and M G Buse
November 1994, Metabolism: clinical and experimental,
N E Block, and D R Menick, and K A Robinson, and M G Buse
May 1995, The American journal of physiology,
N E Block, and D R Menick, and K A Robinson, and M G Buse
December 1990, The American journal of physiology,
N E Block, and D R Menick, and K A Robinson, and M G Buse
October 1997, Zhonghua yi xue za zhi,
N E Block, and D R Menick, and K A Robinson, and M G Buse
December 1990, The American journal of physiology,
N E Block, and D R Menick, and K A Robinson, and M G Buse
August 1990, The Journal of clinical investigation,
N E Block, and D R Menick, and K A Robinson, and M G Buse
January 1992, Gerontology,
N E Block, and D R Menick, and K A Robinson, and M G Buse
July 1994, The Journal of biological chemistry,
N E Block, and D R Menick, and K A Robinson, and M G Buse
January 1990, Histochemistry,
N E Block, and D R Menick, and K A Robinson, and M G Buse
May 1968, Archives of pathology,
Copied contents to your clipboard!