Sexually dimorphic distribution of neurotensin/neuromedin N mRNA in the rat preoptic area. 1991

M J Alexander, and Z J Kiraly, and S E Leeman
Department of Physiology, University of Massachusetts Medical Center, Worcester 01655.

Neurotensin release from estrogen-responsive neurons in the rostral preoptic area of the female rat may play an important role in triggering preovulatory secretion of gonadotropin-releasing hormone on proestrus. We investigated the possibility of sexually differentiated biosynthesis of neurotensin in the rostral preoptic area, using in situ hybridization histochemistry to detect neurotensin/neuromedin N (NT/N) mRNA in adult male rats and adult female rats at proestrus and the first day of diestrus. In sections through the anteroventral periventricular nucleus (AVPv), the number of labeled cells in proestrous females was four times that in males. Diestrus females exhibited half the number of labeled cells present at proestrus, and there was evidence for a significant correlation between circulating estradiol level and number of labeled cells in the AVPv. In the rostral portion of the medial preoptic nucleus (MPN), two contiguous groups of labeled cells were especially prominent. One group, in the medial half of the MPN, was located closer to the midline in females than in males and displayed greater labeling in males than in females. Furthermore, labeling in the rostral MPN was greater at proestrus than at diestrus. These results indicate that biosynthesis of neurotensin and neuromedin N in the rostral preoptic area may be sexually differentiated and, in the female, may vary across the estrous cycle in parallel with circulating estradiol levels, consistent with the view that neurotensin neurons in this area are involved in the regulation of preovulatory secretion of gonadotropin-releasing hormone. The sex- and region-specific expression of NT/N mRNA in the rostral preoptic area suggests functional heterogeneity of neurotensin neuronal populations in this area and implies complex regulation of NT/N gene expression in the rat brain.

UI MeSH Term Description Entries
D008297 Male Males
D009496 Neurotensin A biologically active tridecapeptide isolated from the hypothalamus. It has been shown to induce hypotension in the rat, to stimulate contraction of guinea pig ileum and rat uterus, and to cause relaxation of rat duodenum. There is also evidence that it acts as both a peripheral and a central nervous system neurotransmitter.
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011301 Preoptic Area Region of hypothalamus between the ANTERIOR COMMISSURE and OPTIC CHIASM. Area Preoptica,Lateral Preoptic Area,Medial Preoptic Area,Preoptic Nuclei,Area Preopticas,Area, Lateral Preoptic,Area, Medial Preoptic,Area, Preoptic,Areas, Lateral Preoptic,Areas, Medial Preoptic,Areas, Preoptic,Lateral Preoptic Areas,Medial Preoptic Areas,Nuclei, Preoptic,Nucleus, Preoptic,Preoptic Area, Lateral,Preoptic Area, Medial,Preoptic Areas,Preoptic Areas, Lateral,Preoptic Areas, Medial,Preoptic Nucleus,Preoptica, Area,Preopticas, Area
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D004971 Estrus The period in the ESTROUS CYCLE associated with maximum sexual receptivity and fertility in non-primate female mammals.
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M J Alexander, and Z J Kiraly, and S E Leeman
January 1992, Annals of the New York Academy of Sciences,
M J Alexander, and Z J Kiraly, and S E Leeman
November 1986, Brain research,
M J Alexander, and Z J Kiraly, and S E Leeman
July 1989, Proceedings of the National Academy of Sciences of the United States of America,
M J Alexander, and Z J Kiraly, and S E Leeman
March 1981, The Journal of comparative neurology,
M J Alexander, and Z J Kiraly, and S E Leeman
February 1986, Neuroscience letters,
M J Alexander, and Z J Kiraly, and S E Leeman
November 2000, Cell and tissue research,
M J Alexander, and Z J Kiraly, and S E Leeman
November 1988, Brain research. Developmental brain research,
M J Alexander, and Z J Kiraly, and S E Leeman
September 1980, The Journal of comparative neurology,
M J Alexander, and Z J Kiraly, and S E Leeman
February 1980, Brain research,
M J Alexander, and Z J Kiraly, and S E Leeman
June 1987, Brain research,
Copied contents to your clipboard!