A role for dopamine D2 receptors in reversal learning. 2009

D A De Steno, and C Schmauss
Department of Pharmacology, Columbia University, New York, NY 10032, USA.

Reversal learning has been shown to require intact serotonergic innervation of the forebrain neocortex. Whether dopamine acting through D2 receptors plays a complementary role in this anatomic area is still unclear. Here we show that mice lacking dopamine D2 receptors exhibited significantly impaired performance in the reversal learning phase of an attention-set-shifting task (ASST) and that wild type mice treated chronically with the D2-like receptor antagonist haloperidol exhibited the same cognitive deficit. The test-phase-specific deficits of D2 mutants and haloperidol-treated mice were also accompanied by deficits in the induction of expression of early growth response gene 2 (egr-2), a regulatory transcription factor previously shown to be selectively induced in the ventrolateral orbital frontal cortex and the pre- and infralimbic medial prefrontal cortex of ASST-tested mice. D2-receptor knockout mice and haloperidol-treated wild type, however, exhibited lower egr-2 expression in these anatomic regions after completion of an ASST-test phase that required reversal learning but not after completion of set-shifting phases without rule reversals. In contrast, mice treated chronically with clozapine, an atypical neuroleptic drug with lower D2-receptor affinity and broader pharmacological effects, had deficits in compound discrimination phases of the ASST, but also these deficits were accompanied by lower egr-2 expression in the same anatomic subregions. Thus, the findings indicate that egr-2 expression is a sensitive indicator of test-phase-specific performance in the ASST and that normal function of D2 receptors in subregions of the orbital frontal and the medial prefrontal cortex is required for cognitive flexibility in tests involving rule reversals.

UI MeSH Term Description Entries
D007859 Learning Disabilities Conditions characterized by a significant discrepancy between an individual's perceived level of intellect and their ability to acquire new language and other cognitive skills. These may result from organic or psychological conditions. Relatively common subtypes include DYSLEXIA, DYSCALCULIA, and DYSGRAPHIA. Adolescent Learning Disabilities,Adult Learning Disabilities,Child Learning Disabilities,Developmental Academic Disability,Developmental Academic Disorder,Developmental Disabilities of Scholastic Skills,Learning Disabilities, Adolescent,Learning Disabilities, Child,Learning Disorders,Academic Disorder, Developmental,Adult Learning Disorders,Developmental Disorders of Scholastic Skills,Learning Disorders, Adult,Learning Disturbance,Scholastic Skills Development Disorders,Academic Disabilities, Developmental,Academic Disability, Developmental,Academic Disorders, Developmental,Adolescent Learning Disability,Adult Learning Disability,Adult Learning Disorder,Child Learning Disability,Developmental Academic Disabilities,Developmental Academic Disorders,Disabilities, Adolescent Learning,Disabilities, Adult Learning,Disabilities, Child Learning,Disabilities, Developmental Academic,Disabilities, Learning,Disability, Adolescent Learning,Disability, Adult Learning,Disability, Child Learning,Disability, Developmental Academic,Disability, Learning,Disorder, Learning,Disorders, Adult Learning,Disorders, Learning,Disturbance, Learning,Disturbances, Learning,Learning Disabilities, Adult,Learning Disability,Learning Disability, Adolescent,Learning Disability, Adult,Learning Disability, Child,Learning Disorder,Learning Disorder, Adult,Learning Disturbances
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009483 Neuropsychological Tests Tests designed to assess neurological function associated with certain behaviors. They are used in diagnosing brain dysfunction or damage and central nervous system disorders or injury. Aphasia Tests,Cognitive Test,Cognitive Testing,Cognitive Tests,Memory for Designs Test,Neuropsychological Testing,AX-CPT,Behavioral Assessment of Dysexecutive Syndrome,CANTAB,Cambridge Neuropsychological Test Automated Battery,Clock Test,Cognitive Function Scanner,Continuous Performance Task,Controlled Oral Word Association Test,Delis-Kaplan Executive Function System,Developmental Neuropsychological Assessment,Hooper Visual Organization Test,NEPSY,Neuropsychologic Tests,Neuropsychological Test,Paced Auditory Serial Addition Test,Repeatable Battery for the Assessment of Neuropsychological Status,Rey-Osterrieth Complex Figure,Symbol Digit Modalities Test,Test of Everyday Attention,Test, Neuropsychological,Tests, Neuropsychological,Tower of London Test,Neuropsychologic Test,Test, Cognitive,Testing, Cognitive,Testing, Neuropsychological,Tests, Cognitive
D003024 Clozapine A tricylic dibenzodiazepine, classified as an atypical antipsychotic agent. It binds several types of central nervous system receptors, and displays a unique pharmacological profile. Clozapine is a serotonin antagonist, with strong binding to 5-HT 2A/2C receptor subtype. It also displays strong affinity to several dopaminergic receptors, but shows only weak antagonism at the dopamine D2 receptor, a receptor commonly thought to modulate neuroleptic activity. Agranulocytosis is a major adverse effect associated with administration of this agent. Clozaril,Leponex
D003071 Cognition Intellectual or mental process whereby an organism obtains knowledge. Cognitive Function,Cognitions,Cognitive Functions,Function, Cognitive,Functions, Cognitive
D005625 Frontal Lobe The part of the cerebral hemisphere anterior to the central sulcus, and anterior and superior to the lateral sulcus. Brodmann Area 8,Brodmann's Area 8,Frontal Cortex,Frontal Eye Fields,Lobus Frontalis,Supplementary Eye Field,Area 8, Brodmann,Area 8, Brodmann's,Brodmanns Area 8,Cortex, Frontal,Eye Field, Frontal,Eye Field, Supplementary,Eye Fields, Frontal,Frontal Cortices,Frontal Eye Field,Frontal Lobes,Lobe, Frontal,Supplementary Eye Fields
D006220 Haloperidol A phenyl-piperidinyl-butyrophenone that is used primarily to treat SCHIZOPHRENIA and other PSYCHOSES. It is also used in schizoaffective disorder, DELUSIONAL DISORDERS, ballism, and TOURETTE SYNDROME (a drug of choice) and occasionally as adjunctive therapy in INTELLECTUAL DISABILITY and the chorea of HUNTINGTON DISEASE. It is a potent antiemetic and is used in the treatment of intractable HICCUPS. (From AMA Drug Evaluations Annual, 1994, p279) Haldol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012193 Reversal Learning Any situation where an animal or human is trained to respond differentially to two stimuli (e.g., approach and avoidance) under reward and punishment conditions and subsequently trained under reversed reward values (i.e., the approach which was previously rewarded is punished and vice versa). Learning, Reversal,Learnings, Reversal,Reversal Learnings

Related Publications

D A De Steno, and C Schmauss
March 2006, Cognitive, affective & behavioral neuroscience,
D A De Steno, and C Schmauss
September 2014, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology,
D A De Steno, and C Schmauss
October 2011, The Journal of neuroscience : the official journal of the Society for Neuroscience,
D A De Steno, and C Schmauss
March 2017, Behavioural brain research,
D A De Steno, and C Schmauss
October 2007, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology,
D A De Steno, and C Schmauss
November 2013, BMB reports,
D A De Steno, and C Schmauss
March 2020, Nature,
D A De Steno, and C Schmauss
January 1998, Advances in pharmacology (San Diego, Calif.),
Copied contents to your clipboard!