The IL-2 receptor alpha-chain alters the binding of IL-2 to the beta-chain. 1991

N Arima, and M Kamio, and M Okuma, and G Ju, and T Uchiyama
First Division of Internal Medicine, Faculty of Medicine, Kyoto University, Japan.

The binding of IL-2 to its high affinity receptor results in the formation of the ternary complex consisting of IL-2, alpha-chain (p55, Tac) and beta-chain (p75). We studied the role of alpha-chain in IL-2 binding to the high affinity receptor using IL-2 analog Lys20 which was made by the substitution of Lys for Asp20 of wild-type rIL-2. Lys20 bound to MT-1 cells solely expressing alpha-chain at low affinity, but did not bind to YT-2C2 cells which solely expressed beta-chain. However, direct binding of radiolabeled Lys20 to ED515-D cells, an HTLV-I-infected and IL-2-dependent T cell line, revealed both high affinity and low affinity binding although the Kd value of high affinity binding was 50 to 100 times higher than that of the high affinity binding of wild-type rIL-2. High affinity binding of Lys20 was completely blocked by 2R-B mAb recognizing IL-2R beta-chain. Anti-Tac mAb recognizing IL-2R alpha-chain abolished all of the specific Lys20 bindings. In contrast to the replacement of cell bound 2R-B mAb with wild-type rIL-2 at 37 degrees C, the addition of an excess of Lys20 did not cause the detachment of cell-bound radiolabeled or FITC-labeled 2R-B mAb. Consistent with the results of binding studies, Lys20 induced the proliferation of ED515-D cells, but not large granular lymphocyte leukemic cells. The growth of ED-515D cells was completely suppressed by either anti-Tac mAb or 2R-B mAb. These results strongly suggest that coexpression of the IL-2R alpha- and beta-chains alters the binding affinity of Lys20 and that the interaction between IL-2 and the alpha-chain is a key event in the formation of the IL-2/IL-2R ternary complex.

UI MeSH Term Description Entries
D007376 Interleukin-2 A soluble substance elaborated by antigen- or mitogen-stimulated T-LYMPHOCYTES which induces DNA synthesis in naive lymphocytes. IL-2,Lymphocyte Mitogenic Factor,T-Cell Growth Factor,TCGF,IL2,Interleukin II,Interleukine 2,RU 49637,RU-49637,Ro-23-6019,Ro-236019,T-Cell Stimulating Factor,Thymocyte Stimulating Factor,Interleukin 2,Mitogenic Factor, Lymphocyte,RU49637,Ro 23 6019,Ro 236019,Ro236019,T Cell Growth Factor,T Cell Stimulating Factor
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D004705 Endocytosis Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis. Endocytoses
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D015375 Receptors, Interleukin-2 Receptors present on activated T-LYMPHOCYTES and B-LYMPHOCYTES that are specific for INTERLEUKIN-2 and play an important role in LYMPHOCYTE ACTIVATION. They are heterotrimeric proteins consisting of the INTERLEUKIN-2 RECEPTOR ALPHA SUBUNIT, the INTERLEUKIN-2 RECEPTOR BETA SUBUNIT, and the INTERLEUKIN RECEPTOR COMMON GAMMA-CHAIN. IL-2 Receptors,Interleukin-2 Receptor,Interleukin-2 Receptors,Receptors, IL-2,Receptors, T-Cell Growth Factor,T-Cell Growth Factor Receptors,IL-2 Receptor,IL2 Receptor,IL2 Receptors,Interleukin 2 Receptor,Receptor, TCGF,T-Cell Growth Factor Receptor,TCGF Receptor,TCGF Receptors,IL 2 Receptor,IL 2 Receptors,Interleukin 2 Receptors,Receptor, IL-2,Receptor, IL2,Receptor, Interleukin 2,Receptor, Interleukin-2,Receptors, IL 2,Receptors, IL2,Receptors, Interleukin 2,Receptors, T Cell Growth Factor,Receptors, TCGF,T Cell Growth Factor Receptor,T Cell Growth Factor Receptors
D015394 Molecular Structure The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. Structure, Molecular,Molecular Structures,Structures, Molecular

Related Publications

N Arima, and M Kamio, and M Okuma, and G Ju, and T Uchiyama
March 1992, Proceedings of the National Academy of Sciences of the United States of America,
N Arima, and M Kamio, and M Okuma, and G Ju, and T Uchiyama
March 1995, Journal of immunology (Baltimore, Md. : 1950),
N Arima, and M Kamio, and M Okuma, and G Ju, and T Uchiyama
August 1996, Cytokine,
N Arima, and M Kamio, and M Okuma, and G Ju, and T Uchiyama
June 1997, Transplantation proceedings,
N Arima, and M Kamio, and M Okuma, and G Ju, and T Uchiyama
July 2000, Pediatric research,
N Arima, and M Kamio, and M Okuma, and G Ju, and T Uchiyama
July 1988, Journal of immunology (Baltimore, Md. : 1950),
N Arima, and M Kamio, and M Okuma, and G Ju, and T Uchiyama
March 2002, Brain research,
N Arima, and M Kamio, and M Okuma, and G Ju, and T Uchiyama
September 1992, FEBS letters,
Copied contents to your clipboard!