Ginsenoside Rb1 suppresses ultraviolet radiation-induced apoptosis by inducing DNA repair. 2009

Bao-Xiang Cai, and Song-Liang Jin, and Dan Luo, and Xiang-Fei Lin, and Jie Gao
Department of Dermatology, First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China.

Ultraviolet (UV)-induced DNA damage is a crucial molecular trigger for sunburn cell formation and skin cancer. Nucleotide excision repair (NER) is the main mechanism in repairing UVB-induced DNA damage to mammalian cells. The purpose of this study was to investigate the functional role of ginsenoside Rb1 in UV-induced DNA damage and apoptosis in HaCaT (keratinocyte cell line) cells, and Xpc(-) knockout mouse keratinocytes. Flow cytometry and Hoechst 33258 staining were performed in analyzing UV-induced apoptosis in keratinocytes treated with ginsenoside Rb1. The ImmunoDotBlot assay was used to detect cyclobutane pyrimidine dimers, the main sign of DNA damage. Western blot analysis was applied for analyzing Xeroderma pigmentosum-C (XPC) and excision repair cross-complementing 1 (ERCC1), two of the NER proteins. Ginsenoside Rb1 inhibited UV-induced apoptosis of keratinocytes and caused a notable reduction in UV-specific DNA lesions which was due to induction of DNA repair. This reduction was not observed in Xpc(-) knockout keratinocytes. Ginsenoside Rb1 induced the expression of specific components of the NER complex, such as XPC and ERCC1. Our results demonstrate that ginsenoside Rb1 can protect cells from apoptosis induced by UV radiation by inducing DNA repair.

UI MeSH Term Description Entries
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014466 Ultraviolet Rays That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants. Actinic Rays,Black Light, Ultraviolet,UV Light,UV Radiation,Ultra-Violet Rays,Ultraviolet Light,Ultraviolet Radiation,Actinic Ray,Light, UV,Light, Ultraviolet,Radiation, UV,Radiation, Ultraviolet,Ray, Actinic,Ray, Ultra-Violet,Ray, Ultraviolet,Ultra Violet Rays,Ultra-Violet Ray,Ultraviolet Black Light,Ultraviolet Black Lights,Ultraviolet Radiations,Ultraviolet Ray
D015603 Keratinocytes Epidermal cells which synthesize keratin and undergo characteristic changes as they move upward from the basal layers of the epidermis to the cornified (horny) layer of the skin. Successive stages of differentiation of the keratinocytes forming the epidermal layers are basal cell, spinous or prickle cell, and the granular cell. Keratinocyte
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Bao-Xiang Cai, and Song-Liang Jin, and Dan Luo, and Xiang-Fei Lin, and Jie Gao
January 2002, Nature cell biology,
Bao-Xiang Cai, and Song-Liang Jin, and Dan Luo, and Xiang-Fei Lin, and Jie Gao
November 2008, Archives of pharmacal research,
Bao-Xiang Cai, and Song-Liang Jin, and Dan Luo, and Xiang-Fei Lin, and Jie Gao
January 2023, Anti-cancer agents in medicinal chemistry,
Bao-Xiang Cai, and Song-Liang Jin, and Dan Luo, and Xiang-Fei Lin, and Jie Gao
July 1995, Plant physiology,
Bao-Xiang Cai, and Song-Liang Jin, and Dan Luo, and Xiang-Fei Lin, and Jie Gao
December 1985, Photo-dermatology,
Bao-Xiang Cai, and Song-Liang Jin, and Dan Luo, and Xiang-Fei Lin, and Jie Gao
March 2024, Anti-cancer agents in medicinal chemistry,
Bao-Xiang Cai, and Song-Liang Jin, and Dan Luo, and Xiang-Fei Lin, and Jie Gao
May 2016, Radiation research,
Bao-Xiang Cai, and Song-Liang Jin, and Dan Luo, and Xiang-Fei Lin, and Jie Gao
January 2011, PloS one,
Bao-Xiang Cai, and Song-Liang Jin, and Dan Luo, and Xiang-Fei Lin, and Jie Gao
January 2018, American journal of translational research,
Bao-Xiang Cai, and Song-Liang Jin, and Dan Luo, and Xiang-Fei Lin, and Jie Gao
January 2013, Evidence-based complementary and alternative medicine : eCAM,
Copied contents to your clipboard!