Achyranthes bidentata Blume extract protects cultured hippocampal neurons against glutamate-induced neurotoxicity. 2009

Songlin Zhou, and Xia Chen, and Xiaosong Gu, and Fei Ding
Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, JS, PR China.

We have prepared an aqueous extract of Achyranthes bidentata Blume, a Chinese medicinal herb commonly prescribed for arthritis treatment or immnopotentiation, and have found that Achyranthes bidentata extract promotes nerve growth and prevents neuronal apoptosis. OBJECTIVE To investigate the protective effect of Achyranthes bidentata extract against glutamate-induced neurotoxicity in primary culture of rat hippocampal neurons. METHODS We accomplished MTT assay for cell viability, Hoechst 33342 staining, and flow cytometry for cell apoptosis analysis to examine the effects of Achyranthes bidentata extract on glutamate-induced neurotoxicity, and also used Fluo 4-AM measurement, RT-PCR and Western blot analysis to determine the changes in intracellular calcium concentration [Ca(2+)](I), and mRNA and protein levels of Bcl-2, respectively, concurrently accompanied with the influences of Achyranthes bidentata extract. RESULTS Achyranthes bidentata extract was found to inhibit glutamate-induced neuronal damage in a dose- and time-dependent manner. On the other hand, Achyranthes bidentata extract depressed glutamate-induced elevation of intracellular calcium concentration [Ca(2+)](i), and also antagonized glutamate-evoked decreases in Bcl-2 expression at mRNA and protein levels. CONCLUSIONS The results suggest that Achyranthes bidentata extract prevents glutamate-induced cell damage in primarily cultured hippocampal neurons by inhibiting an increase in [Ca(2+)](i), and reversing the down-regulation of Bcl-2.

UI MeSH Term Description Entries
D008517 Phytotherapy Use of plants or herbs to treat diseases or to alleviate pain. Herb Therapy,Herbal Therapy
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010936 Plant Extracts Concentrated pharmaceutical preparations of plants obtained by removing active constituents with a suitable solvent, which is evaporated away, and adjusting the residue to a prescribed standard. Herbal Medicines,Plant Extract,Extract, Plant,Extracts, Plant,Medicines, Herbal
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015536 Down-Regulation A negative regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Down-Regulation,Down-Regulation (Physiology),Downregulation,Down Regulation,Down-Regulation, Receptor

Related Publications

Songlin Zhou, and Xia Chen, and Xiaosong Gu, and Fei Ding
October 2008, Neuroscience letters,
Songlin Zhou, and Xia Chen, and Xiaosong Gu, and Fei Ding
October 2010, European journal of pharmacology,
Songlin Zhou, and Xia Chen, and Xiaosong Gu, and Fei Ding
June 2020, Neural regeneration research,
Songlin Zhou, and Xia Chen, and Xiaosong Gu, and Fei Ding
February 2005, Neuroscience letters,
Songlin Zhou, and Xia Chen, and Xiaosong Gu, and Fei Ding
January 1999, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
Songlin Zhou, and Xia Chen, and Xiaosong Gu, and Fei Ding
January 1996, Clinical and experimental pharmacology & physiology,
Songlin Zhou, and Xia Chen, and Xiaosong Gu, and Fei Ding
April 1994, Brain research,
Songlin Zhou, and Xia Chen, and Xiaosong Gu, and Fei Ding
October 2019, Mitochondrial DNA. Part B, Resources,
Songlin Zhou, and Xia Chen, and Xiaosong Gu, and Fei Ding
May 2003, Immunopharmacology and immunotoxicology,
Songlin Zhou, and Xia Chen, and Xiaosong Gu, and Fei Ding
March 2021, Mitochondrial DNA. Part B, Resources,
Copied contents to your clipboard!