Suppression of murine SLE by oral anti-CD3: inducible CD4+CD25-LAP+ regulatory T cells control the expansion of IL-17+ follicular helper T cells. 2009

H Y Wu, and E M Center, and G C Tsokos, and H L Weiner
Brigham and Women's Hospital and Harvard Medical School Boston, Massachusetts, USA. hwu@rics.bwh.harvard.edu

Lupus is an antibody-mediated autoimmune disease. The production of pathogenic, class switched and affinity maturated autoantibodies in lupus is dependent on T cell help. A potential mechanism of disease pathogenesis is a lack of control of pathogenic T helper cells by regulatory T cells in lupus. It has been repeatedly shown that the naturally occurring CD4+CD25+ regulatory T cells in lupus prone mice and patients with SLE are defective both in frequency and function. Thus, the generation of inducible regulatory T cells that can control T cell help for autoantibody production is a potential avenue for the treatment of SLE. We have found that oral administration of anti-CD3 monoclonal antibody attenuated lupus development and arrested on-going disease in lupus prone SNF1 mice. Oral anti-CD3 induces a CD4+CD25-LAP+ regulatory T cell that secrets high levels of TGF-beta and suppresses in vitro in TFG-beta-dependent fashion. Animals treated with oral anti-CD3 had less glomerulonephritis and diminished levels of anti-dsDNA autoantibodies. Oral anti-CD3 led to a downregulation of IL-17+CD4+ICOS-CXCR5+ follicular helper T cells, CD138+ plasma cells and CD73+ mature memory B cells. Our results show that oral anti-CD3 induces CD4+CD25-LAP+ regulatory T cells that suppress lupus in mice and is associated with downregulation of T cell help for autoantibody production.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008180 Lupus Erythematosus, Systemic A chronic, relapsing, inflammatory, and often febrile multisystemic disorder of connective tissue, characterized principally by involvement of the skin, joints, kidneys, and serosal membranes. It is of unknown etiology, but is thought to represent a failure of the regulatory mechanisms of the autoimmune system. The disease is marked by a wide range of system dysfunctions, an elevated erythrocyte sedimentation rate, and the formation of LE cells in the blood or bone marrow. Libman-Sacks Disease,Lupus Erythematosus Disseminatus,Systemic Lupus Erythematosus,Disease, Libman-Sacks,Libman Sacks Disease
D008297 Male Males
D008814 Mice, Inbred NZB An inbred strain of mouse that is widely used as a model for AUTOIMMUNE DISEASES such as SYSTEMIC LUPUS ERYTHEMATOSUS. Mice, NZB,Mouse, Inbred NZB,Mouse, NZB,Inbred NZB Mice,Inbred NZB Mouse,NZB Mice,NZB Mice, Inbred,NZB Mouse,NZB Mouse, Inbred
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005260 Female Females
D005921 Glomerulonephritis Inflammation of the renal glomeruli (KIDNEY GLOMERULUS) that can be classified by the type of glomerular injuries including antibody deposition, complement activation, cellular proliferation, and glomerulosclerosis. These structural and functional abnormalities usually lead to HEMATURIA; PROTEINURIA; HYPERTENSION; and RENAL INSUFFICIENCY. Bright Disease,Kidney Scarring,Glomerulonephritides,Scarring, Kidney
D006377 T-Lymphocytes, Helper-Inducer Subpopulation of CD4+ lymphocytes that cooperate with other lymphocytes (either T or B) to initiate a variety of immune functions. For example, helper-inducer T-cells cooperate with B-cells to produce antibodies to thymus-dependent antigens and with other subpopulations of T-cells to initiate a variety of cell-mediated immune functions. Helper Cell,Helper Cells,Helper T Cell,Helper-Inducer T-Lymphocytes,Inducer Cell,Inducer Cells,T-Cells, Helper-Inducer,T-Lymphocytes, Helper,T-Lymphocytes, Inducer,Helper T-Cells,Cell, Helper T,Cells, Helper T,Helper Inducer T Lymphocytes,Helper T Cells,Helper T-Cell,Helper T-Lymphocyte,Helper T-Lymphocytes,Helper-Inducer T-Cell,Helper-Inducer T-Cells,Helper-Inducer T-Lymphocyte,Inducer T-Lymphocyte,Inducer T-Lymphocytes,T Cell, Helper,T Cells, Helper,T Cells, Helper Inducer,T Lymphocytes, Helper,T Lymphocytes, Helper Inducer,T Lymphocytes, Inducer,T-Cell, Helper,T-Cell, Helper-Inducer,T-Cells, Helper,T-Lymphocyte, Helper,T-Lymphocyte, Helper-Inducer,T-Lymphocyte, Inducer
D000284 Administration, Oral The giving of drugs, chemicals, or other substances by mouth. Drug Administration, Oral,Administration, Oral Drug,Oral Administration,Oral Drug Administration,Administrations, Oral,Administrations, Oral Drug,Drug Administrations, Oral,Oral Administrations,Oral Drug Administrations

Related Publications

H Y Wu, and E M Center, and G C Tsokos, and H L Weiner
June 2006, Nature medicine,
H Y Wu, and E M Center, and G C Tsokos, and H L Weiner
March 2017, Kidney international,
H Y Wu, and E M Center, and G C Tsokos, and H L Weiner
June 2008, European journal of immunology,
H Y Wu, and E M Center, and G C Tsokos, and H L Weiner
April 2007, Journal of immunology (Baltimore, Md. : 1950),
H Y Wu, and E M Center, and G C Tsokos, and H L Weiner
March 2008, Journal of leukocyte biology,
H Y Wu, and E M Center, and G C Tsokos, and H L Weiner
June 2011, Respiratory research,
H Y Wu, and E M Center, and G C Tsokos, and H L Weiner
April 2005, Journal of reproductive immunology,
H Y Wu, and E M Center, and G C Tsokos, and H L Weiner
January 2011, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!