Relationships between membranous organelles in amoebae studied by electron microscopic cytochemical staining. 1977

C J Flickinger

The intracellular location of a variety of enzymes was studied in Amoeba proteus with the use of electron microscopic cytochemical methods, in an attempt to assess the relationships between different membranous organelles. One group of enzymes, including nucleoside diphosphatases (IDPase, UDPase, GDPase, ADPase), carbamoyl phosphatase, alkaline phosphatase, and BAXD oxidase was localized mainly in the rough endoplasmic reticulum, nuclear envelope, and convex side of the Golgi apparatus. Esterase activity had a similar localization except that the Golgi apparatus was "stained" throughout most of its extent. A second group of enzymes was found in Golgi cisternae and vesicles, and in come vacuoles. This group included acid phosphatase, thiamine pyrophosphatase, and aryl sulfatase. Some enzymes previously detected in cytoplasmic membranes of other cells, including glucose-6-phosphatase, showed little or no activity in amoebae. The results suggest that there are chemical similarities and probable functional relationships between the rough endoplasmic reticulum, the nuclear envelope, and the convex side of the Golgi apparatus. On the other hand, the concave pole of the Golgi apparatus, aggregates of smooth tubules and vesicles, and the cell surface appear more closely related to one another than to the endoplasmic reticulum and the convex side of the Golgi apparatus. The cytochemical similarity between the Golgi apparatus and certain vacuoles such as food vacuoles may reflect the role of the Golgi apparatus in the formation of lysosomes. The locations of reaction products of the various enzymes in amoebae are compared with observations reported for other cell types.

UI MeSH Term Description Entries
D008247 Lysosomes A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured or undergoes MEMBRANE FUSION. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed). Autolysosome,Autolysosomes,Lysosome
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010744 Phosphoric Monoester Hydrolases A group of hydrolases which catalyze the hydrolysis of monophosphoric esters with the production of one mole of orthophosphate. Phosphatase,Phosphatases,Phosphohydrolase,Phosphohydrolases,Phosphomonoesterase,Phosphomonoesterases,Phosphoric Monoester Hydrolase,Hydrolase, Phosphoric Monoester,Hydrolases, Phosphoric Monoester,Monoester Hydrolase, Phosphoric
D004721 Endoplasmic Reticulum A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed) Ergastoplasm,Reticulum, Endoplasmic
D004950 Esterases Any member of the class of enzymes that catalyze the cleavage of an ester bond and result in the addition of water to the resulting molecules. Esterase
D006056 Golgi Apparatus A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990) Golgi Complex,Apparatus, Golgi,Complex, Golgi
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000469 Alkaline Phosphatase An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.1.
D000656 Amoeba A genus of ameboid protozoa. Characteristics include a vesicular nucleus and the formation of several PSEUDOPODIA, one of which is dominant at a given time. Reproduction occurs asexually by binary fission. Ameba
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

C J Flickinger
December 1971, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
C J Flickinger
March 1963, The science reports of the research institutes, Tohoku University. Ser. C, Medicine. Tohoku Daigaku,
C J Flickinger
September 1984, Showa Shigakkai zasshi = The Journal of Showa University Dental Society,
C J Flickinger
January 2019, Advances in virus research,
C J Flickinger
January 1982, Brain research bulletin,
C J Flickinger
March 1970, Archives of dermatology,
Copied contents to your clipboard!