Plasminogen activator inhibitor-1 regulates integrin alphavbeta3 expression and autocrine transforming growth factor beta signaling. 2009

Benjamin S Pedroja, and Leah E Kang, and Alex O Imas, and Peter Carmeliet, and Audrey M Bernstein
Department of Ophthalmology, Mount Sinai School of Medicine, New York, New York 10029, USA.

Fibrosis is characterized by elevated transforming growth factor beta (TGFbeta) signaling, resulting in extracellular matrix accumulation and increased PAI-1 (plasminogen activator inhibitor) expression. PAI-1 induces the internalization of urokinase plasminogen activator/receptor and integrin alphavbeta3 from the cell surface. Since increased alphavbeta3 expression correlates with increased TGFbeta signaling, we hypothesized that aberrant PAI-1-mediated alphavbeta3 endocytosis could initiate an autocrine loop of TGFbeta activity. We found that in PAI-1 knock-out (KO) mouse embryonic fibroblasts), alphavbeta3 endocytosis was reduced by approximately 75%, leaving alphavbeta3 in enlarged focal adhesions, similar to wild type cells transfected with PAI-1 small interfering RNA. TGFbeta signaling was significantly enhanced in PAI-1 KO cells, as demonstrated by a 3-fold increase in SMAD2/3-containing nuclei and a 2.9-fold increase in TGFbeta activity that correlated with an increase in alphavbeta3 and TGFbeta receptor II expression. As expected, PAI-1 KO cells had unregulated plasmin activity, which was only partially responsible for TGFbeta activation, as evidenced by a mere 25% reduction in TGFbeta activity when plasmin was inhibited. Treatment of cells with an alphavbeta3-specific cyclic RGD peptide (GpenGRGD) led to a more profound (59%) TGFbeta inhibition; a nonspecific RGD peptide (GRGDNP) inhibited TGFbeta by only 23%. Human primary fibroblasts were used to confirm that PAI-1 inhibition and beta3 overexpression led to an increase in TGFbeta activity. Consistent with a fibrotic phenotype, PAI-1 KO cells were constitutively myofibroblasts that had a 1.6-fold increase in collagen deposition over wild type cells. These data suggest that PAI-1-mediated regulation of alphavbeta3 integrin is critical for the control of TGFbeta signaling and the prevention of fibrotic disease.

UI MeSH Term Description Entries
D008907 Mink Carnivores of genera Mustela and Neovison of the family MUSTELIDAE. The European mink has white upper and lower lips while the American mink lacks white upper lip. American Mink,European Mink,Mustela lutreola,Mustela macrodon,Mustela vison,Neovison vison,Sea Mink,Mink, American,Mink, European,Mink, Sea,Minks,Minks, Sea,Sea Minks,vison, Neovison
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D004705 Endocytosis Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis. Endocytoses
D005341 Fibrinolysin A product of the lysis of plasminogen (profibrinolysin) by PLASMINOGEN activators. It is composed of two polypeptide chains, light (B) and heavy (A), with a molecular weight of 75,000. It is the major proteolytic enzyme involved in blood clot retraction or the lysis of fibrin and quickly inactivated by antiplasmins. Plasmin,Fibrogammin,Glu-Plasmin,Protease F,Thrombolysin,Glu Plasmin
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000077294 Receptor, Transforming Growth Factor-beta Type II A transmembrane serine-threonine kinase that forms a heteromeric complex with TYPE I TGF-BETA RECEPTORS when bound to TGF-BETA. This receptor complex regulates a variety of physiological and pathological processes including CELL CYCLE ARREST; CELL PROLIFERATION; CELL DIFFERENTIATION; WOUND HEALING; EXTRACELLULAR MATRIX production, immunosuppression and ONCOGENESIS. TGF-beta Type II Receptor,TGF-beta Type II Receptors,TGFBR2,TbetaR-II Kinase,Transforming Growth Factor-beta Type II Receptor,Transforming Growth Factor-beta Type II Receptors,Type II TGF-beta Receptor,Type II TGF-beta Receptors,Kinase, TbetaR-II,Receptor, Transforming Growth Factor beta Type II,TGF beta Type II Receptor,TGF beta Type II Receptors,TbetaR II Kinase,Transforming Growth Factor beta Type II Receptor,Transforming Growth Factor beta Type II Receptors,Type II TGF beta Receptor,Type II TGF beta Receptors

Related Publications

Benjamin S Pedroja, and Leah E Kang, and Alex O Imas, and Peter Carmeliet, and Audrey M Bernstein
November 1990, The Journal of investigative dermatology,
Benjamin S Pedroja, and Leah E Kang, and Alex O Imas, and Peter Carmeliet, and Audrey M Bernstein
September 2009, Biochemical and biophysical research communications,
Benjamin S Pedroja, and Leah E Kang, and Alex O Imas, and Peter Carmeliet, and Audrey M Bernstein
May 2008, Zhonghua gan zang bing za zhi = Zhonghua ganzangbing zazhi = Chinese journal of hepatology,
Benjamin S Pedroja, and Leah E Kang, and Alex O Imas, and Peter Carmeliet, and Audrey M Bernstein
April 2006, Arteriosclerosis, thrombosis, and vascular biology,
Benjamin S Pedroja, and Leah E Kang, and Alex O Imas, and Peter Carmeliet, and Audrey M Bernstein
January 1995, Experimental nephrology,
Benjamin S Pedroja, and Leah E Kang, and Alex O Imas, and Peter Carmeliet, and Audrey M Bernstein
September 2008, The Journal of biological chemistry,
Benjamin S Pedroja, and Leah E Kang, and Alex O Imas, and Peter Carmeliet, and Audrey M Bernstein
April 2005, The Journal of biological chemistry,
Benjamin S Pedroja, and Leah E Kang, and Alex O Imas, and Peter Carmeliet, and Audrey M Bernstein
March 2003, European journal of biochemistry,
Benjamin S Pedroja, and Leah E Kang, and Alex O Imas, and Peter Carmeliet, and Audrey M Bernstein
January 1999, Journal of gastrointestinal surgery : official journal of the Society for Surgery of the Alimentary Tract,
Benjamin S Pedroja, and Leah E Kang, and Alex O Imas, and Peter Carmeliet, and Audrey M Bernstein
August 2002, Investigative ophthalmology & visual science,
Copied contents to your clipboard!