Skeletal health: primate model of postmenopausal osteoporosis. 2009

S Y Smith, and J Jolette, and C H Turner
Charles River Preclinical Services, Montreal, Quebec, Canada. Susan.Smith@crl.com

Currently, the nonhuman primate is the most widely used large animal model to evaluate the safety and efficacy of new drug entities to treat or prevent estrogen-deficiency-induced bone loss and osteoporosis. Surgical ovariectomy (OVX) induces a state of high bone turnover and rapid bone loss establishing a new steady-state bone mass within 8-9 months. Many systems in the monkey are similar to humans, including skeletal and reproductive physiology and the immune system, making this a plausible model suitable to evaluate the effects of new bone drugs. The long-term sequelae following OVX and withdrawal of monthly exposure to cyclic reproductive hormones in older female monkeys (cynomolgus and rhesus) mimics estrogen depletion and postmenopausal bone loss occurring in women. Characterization of the primate model revealed an apparent limitation to the extent of bone loss. Animals lose bone mass after OVX, but the extent of the bone loss cannot be described as osteoporotic. The small differences between OVX and sham-operated controls in many important bone measurements is overcome by including 15-20 animals per group to provide adequate statistical power. The long-term, at least 16 month, bone safety studies performed to satisfy regulatory guidelines provide an opportunity to study treatment effects for an extended period not covered in shorter-term safety studies. In vivo end-points such as densitometry and biochemical markers translate easily to clinical use, while biomechanical end-points that cannot be measured clinically can be used to predict fracture prevention. To date, the monkey OVX model has been used to support submissions for many new drugs including anabolics, bisphosphonates and selective estrogen receptor modulators. Despite its limitations, the OVX monkey model remains the best characterized of the large animal models of osteopenia and has become integral to osteoporosis drug development.

UI MeSH Term Description Entries
D008252 Macaca fascicularis A species of the genus MACACA which typically lives near the coast in tidal creeks and mangrove swamps primarily on the islands of the Malay peninsula. Burmese Long-Tailed Macaque,Crab-Eating Monkey,Cynomolgus Monkey,M. f. aurea,M. fascicularis,Macaca fascicularis aurea,Monkey, Crab-Eating,Monkey, Cynomolgus,Crab-Eating Macaque,Burmese Long Tailed Macaque,Crab Eating Macaque,Crab Eating Monkey,Crab-Eating Macaques,Crab-Eating Monkeys,Cynomolgus Monkeys,Long-Tailed Macaque, Burmese,Macaque, Burmese Long-Tailed,Macaque, Crab-Eating,Monkey, Crab Eating
D010052 Ovariectomy The surgical removal of one or both ovaries. Castration, Female,Oophorectomy,Bilateral Ovariectomy,Bilateral Ovariectomies,Castrations, Female,Female Castration,Female Castrations,Oophorectomies,Ovariectomies,Ovariectomies, Bilateral,Ovariectomy, Bilateral
D001851 Bone Diseases, Metabolic Diseases that affect the METABOLIC PROCESSES of BONE TISSUE. Low Bone Density,Low Bone Mineral Density,Osteopenia,Metabolic Bone Diseases,Bone Density, Low,Bone Disease, Metabolic,Low Bone Densities,Metabolic Bone Disease,Osteopenias
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015519 Bone Density The amount of mineral per square centimeter of BONE. This is the definition used in clinical practice. Actual bone density would be expressed in grams per milliliter. It is most frequently measured by X-RAY ABSORPTIOMETRY or TOMOGRAPHY, X RAY COMPUTED. Bone density is an important predictor for OSTEOPOROSIS. Bone Mineral Content,Bone Mineral Density,Bone Densities,Bone Mineral Contents,Bone Mineral Densities,Density, Bone,Density, Bone Mineral
D015663 Osteoporosis, Postmenopausal Metabolic disorder associated with fractures of the femoral neck, vertebrae, and distal forearm. It occurs commonly in women within 15-20 years after menopause, and is caused by factors associated with menopause including estrogen deficiency. Bone Loss, Perimenopausal,Bone Loss, Postmenopausal,Perimenopausal Bone Loss,Postmenopausal Bone Loss,Postmenopausal Osteoporosis,Osteoporosis, Post-Menopausal,Bone Losses, Perimenopausal,Bone Losses, Postmenopausal,Osteoporoses, Post-Menopausal,Osteoporoses, Postmenopausal,Osteoporosis, Post Menopausal,Perimenopausal Bone Losses,Post-Menopausal Osteoporoses,Post-Menopausal Osteoporosis,Postmenopausal Bone Losses,Postmenopausal Osteoporoses
D023381 Endpoint Determination Establishment of the level of a quantifiable effect indicative of a biologic process. The evaluation is frequently to detect the degree of toxic or therapeutic effect. Endpoint Assay,End Point Assay,End Point Determination,Assay, End Point,Assay, Endpoint,Assays, End Point,Assays, Endpoint,Determination, Endpoint,Determinations, End Point,Determinations, Endpoint,End Point Assays,End Point Determinations,Endpoint Assays,Endpoint Determinations,Point Assay, End,Point Assays, End,Point Determinations, End

Related Publications

S Y Smith, and J Jolette, and C H Turner
April 1986, Calcified tissue international,
S Y Smith, and J Jolette, and C H Turner
December 1984, The Journal of clinical endocrinology and metabolism,
S Y Smith, and J Jolette, and C H Turner
October 1992, The Journal of clinical endocrinology and metabolism,
S Y Smith, and J Jolette, and C H Turner
August 1999, Trends in endocrinology and metabolism: TEM,
S Y Smith, and J Jolette, and C H Turner
January 2020, Lupus,
S Y Smith, and J Jolette, and C H Turner
February 2009, Best practice & research. Clinical obstetrics & gynaecology,
S Y Smith, and J Jolette, and C H Turner
March 1998, The American journal of managed care,
S Y Smith, and J Jolette, and C H Turner
June 2006, Nihon rinsho. Japanese journal of clinical medicine,
S Y Smith, and J Jolette, and C H Turner
January 1994, Current therapy in endocrinology and metabolism,
S Y Smith, and J Jolette, and C H Turner
December 1974, Primary care,
Copied contents to your clipboard!