Regulation of Th17 differentiation by epidermal fatty acid-binding protein. 2009

Bing Li, and Joseph M Reynolds, and Robert D Stout, and David A Bernlohr, and Jill Suttles
Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40292, USA.

Epidermal fatty acid-binding protein, E-FABP, a lipid chaperone, has been shown to regulate the inflammatory function of macrophages and dendritic cells. Herein, we demonstrate that T cell expression of E-FABP promotes Th17 differentiation, while counterregulating development of FoxP3(+) regulatory T cells (Tregs). In response to immunization with myelin oligodendrocyte glycoprotein peptide (MOG(35-55)), E-FABP-deficient mice generated reduced levels of Th17 cells and elevated levels of Tregs, as compared with wild-type mice. Likewise, naive CD4(+) T cells isolated from E-FABP-deficient mice showed reduced expression of IL-17 and enhanced expression of FoxP3, in vitro, when subjected to Th17 or Treg polarizing conditions, respectively. It has been demonstrated previously that IL-21, induced by IL-6, stimulates the expression of the nuclear receptors retinoic acid-related orphan receptor (ROR)gammat and RORalpha, which in turn induce expression of IL-17. We found that the impaired Th17 differentiation by E-FABP-deficient CD4(+) T cells was associated with lower levels of IL-21 expression in response to IL-6, as well as reduced expression of RORgammat and RORalpha. However, E-FABP-deficient CD4(+) T cells expressed significantly higher levels of the nuclear receptor peroxisome proliferator-activating receptor (PPAR)gamma than did wild-type CD4(+) T cells, and treatment with the PPARgamma antagonist GW9662 restored expression of IL-21, RORgammat, RORalpha, and IL-17 by E-FABP-deficient T cells to wild-type levels. The negative influence of E-FABP deficiency on IL-17 expression was attributed to PPARgamma-mediated suppression of IL-6-induced STAT3 activity. Thus, taken together, our data indicate that expression of E-FABP by CD4(+) T cells contributes to the control of IL-6 stimulation of the IL-21/ROR/IL-17 pathway and to the Th17/Treg counterbalance.

UI MeSH Term Description Entries
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004681 Encephalomyelitis, Autoimmune, Experimental An experimental animal model for central nervous system demyelinating disease. Inoculation with a white matter emulsion combined with FREUND'S ADJUVANT, myelin basic protein, or purified central myelin triggers a T cell-mediated immune response directed towards central myelin. The pathologic features are similar to MULTIPLE SCLEROSIS, including perivascular and periventricular foci of inflammation and demyelination. Subpial demyelination underlying meningeal infiltrations also occurs, which is also a feature of ENCEPHALOMYELITIS, ACUTE DISSEMINATED. Passive immunization with T-cells from an afflicted animal to a normal animal also induces this condition. (From Immunol Res 1998;17(1-2):217-27; Raine CS, Textbook of Neuropathology, 2nd ed, p604-5) Autoimmune Encephalomyelitis, Experimental,Encephalomyelitis, Allergic,Encephalomyelitis, Experimental Autoimmune,Allergic Encephalomyelitis,Allergic Encephalomyelitis, Experimental,Autoimmune Experimental Encephalomyelitis,Experimental Allergic Encephalomyelitis,Experimental Autoimmune Encephalomyelitis,Encephalomyelitis, Autoimmune Experimental,Encephalomyelitis, Experimental Allergic,Experimental Allergic Encephalomyelitides,Experimental Encephalomyelitis, Autoimmune
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006377 T-Lymphocytes, Helper-Inducer Subpopulation of CD4+ lymphocytes that cooperate with other lymphocytes (either T or B) to initiate a variety of immune functions. For example, helper-inducer T-cells cooperate with B-cells to produce antibodies to thymus-dependent antigens and with other subpopulations of T-cells to initiate a variety of cell-mediated immune functions. Helper Cell,Helper Cells,Helper T Cell,Helper-Inducer T-Lymphocytes,Inducer Cell,Inducer Cells,T-Cells, Helper-Inducer,T-Lymphocytes, Helper,T-Lymphocytes, Inducer,Helper T-Cells,Cell, Helper T,Cells, Helper T,Helper Inducer T Lymphocytes,Helper T Cells,Helper T-Cell,Helper T-Lymphocyte,Helper T-Lymphocytes,Helper-Inducer T-Cell,Helper-Inducer T-Cells,Helper-Inducer T-Lymphocyte,Inducer T-Lymphocyte,Inducer T-Lymphocytes,T Cell, Helper,T Cells, Helper,T Cells, Helper Inducer,T Lymphocytes, Helper,T Lymphocytes, Helper Inducer,T Lymphocytes, Inducer,T-Cell, Helper,T-Cell, Helper-Inducer,T-Cells, Helper,T-Lymphocyte, Helper,T-Lymphocyte, Helper-Inducer,T-Lymphocyte, Inducer
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014212 Tretinoin An important regulator of GENE EXPRESSION during growth and development, and in NEOPLASMS. Tretinoin, also known as retinoic acid and derived from maternal VITAMIN A, is essential for normal GROWTH; and EMBRYONIC DEVELOPMENT. An excess of tretinoin can be teratogenic. It is used in the treatment of PSORIASIS; ACNE VULGARIS; and several other SKIN DISEASES. It has also been approved for use in promyelocytic leukemia (LEUKEMIA, PROMYELOCYTIC, ACUTE). Retinoic Acid,Vitamin A Acid,Retin-A,Tretinoin Potassium Salt,Tretinoin Sodium Salt,Tretinoin Zinc Salt,Vesanoid,all-trans-Retinoic Acid,beta-all-trans-Retinoic Acid,trans-Retinoic Acid,Acid, Retinoic,Acid, Vitamin A,Acid, all-trans-Retinoic,Acid, beta-all-trans-Retinoic,Acid, trans-Retinoic,Potassium Salt, Tretinoin,Retin A,Salt, Tretinoin Potassium,Salt, Tretinoin Sodium,Salt, Tretinoin Zinc,Sodium Salt, Tretinoin,Zinc Salt, Tretinoin,all trans Retinoic Acid,beta all trans Retinoic Acid,trans Retinoic Acid
D047495 PPAR gamma A nuclear transcription factor. Heterodimerization with RETINOID X RECEPTOR ALPHA is important in regulation of GLUCOSE metabolism and CELL GROWTH PROCESSES. It is a target of THIAZOLIDINEDIONES for control of DIABETES MELLITUS. PPARgamma,PPARgamma2,PPARgamma3,Peroxisome Proliferator-Activated Receptor gamma,Thiazolidinedione Receptor,mPPARgamma1,mPPARgamma2,Peroxisome Proliferator Activated Receptor gamma,Receptor, Thiazolidinedione

Related Publications

Bing Li, and Joseph M Reynolds, and Robert D Stout, and David A Bernlohr, and Jill Suttles
March 1994, The Biochemical journal,
Bing Li, and Joseph M Reynolds, and Robert D Stout, and David A Bernlohr, and Jill Suttles
September 2006, Clinical chemistry,
Bing Li, and Joseph M Reynolds, and Robert D Stout, and David A Bernlohr, and Jill Suttles
May 2015, Immunity,
Bing Li, and Joseph M Reynolds, and Robert D Stout, and David A Bernlohr, and Jill Suttles
August 1997, The American journal of physiology,
Bing Li, and Joseph M Reynolds, and Robert D Stout, and David A Bernlohr, and Jill Suttles
January 1993, Molecular and cellular biochemistry,
Bing Li, and Joseph M Reynolds, and Robert D Stout, and David A Bernlohr, and Jill Suttles
September 1994, The Biochemical journal,
Bing Li, and Joseph M Reynolds, and Robert D Stout, and David A Bernlohr, and Jill Suttles
March 2008, Nan fang yi ke da xue xue bao = Journal of Southern Medical University,
Bing Li, and Joseph M Reynolds, and Robert D Stout, and David A Bernlohr, and Jill Suttles
January 1997, Biochimie,
Bing Li, and Joseph M Reynolds, and Robert D Stout, and David A Bernlohr, and Jill Suttles
July 2022, The Journal of investigative dermatology,
Bing Li, and Joseph M Reynolds, and Robert D Stout, and David A Bernlohr, and Jill Suttles
April 2015, Oncotarget,
Copied contents to your clipboard!