Effects of prostaglandin E2 and cyclooxygenase inhibitors on clustering and level of nicotinic acetylcholine receptor in mouse myotubes co-cultured with spinal cord explant. 1991

I Kimura, and M Nakagawa, and S Kobayashi, and M Kimura
Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Japan.

The clustering and level of nicotinic acetylcholine receptor (n-AChR) in cultured mouse myotubes are negatively controlled by endogenous phospholipase A2 (PLA2) (Kimura et al., Int. J. Devl. Neurosci. 5, 127-133, 1987). The effects of PLA2-related metabolites, prostaglandins, leukotrienes and platelet-activating factor (PAF) were investigated using fluorescein isothiocyanate-alpha-bungarotoxin. Peak and total fluorescence within a cluster were used as indices of clustering and level of n-AChR, respectively. Prostaglandin E2 (PGE2, 1-10 microM) decreased both indices in a concentration-dependent manner. Aspirin and indomethacin, cyclooxygenase inhibitors, increased the indices at 1.0 microM and 10-30 nM, and decreased them at higher concentrations of 10-30 microM and 0.1-1 microM, respectively. Prostaglandin F2 alpha (PGF2 alpha, 1-10 microM), nordihydroguaiaretic acid (30 microM), a lipoxygenase inhibitor, and PAF (10 microM) had no effect. These results suggest that the control of endogenous PLA2 on the clustering and level of n-AChR is due to PGE2, but not to PGF2 alpha, leukotrienes or PAF.

UI MeSH Term Description Entries
D007213 Indomethacin A non-steroidal anti-inflammatory agent (NSAID) that inhibits CYCLOOXYGENASE, which is necessary for the formation of PROSTAGLANDINS and other AUTACOIDS. It also inhibits the motility of POLYMORPHONUCLEAR LEUKOCYTES. Amuno,Indocid,Indocin,Indomet 140,Indometacin,Indomethacin Hydrochloride,Metindol,Osmosin
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009637 Masoprocol A potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. The compound also inhibits formyltetrahydrofolate synthetase, carboxylesterase, and cyclooxygenase to a lesser extent. It also serves as an antioxidant in fats and oils. Nordihydroguaiaretic Acid,(R*,S*)-4,4'-(2,3-Dimethylbutane-1,4-diyl)bispyrocatechol,Actinex,Dihydronorguaiaretic Acid,Nordihydroguaiaretic Acid, (R*,S*)-Isomer,meso-Nordihydroguaiaretic Acid,Acid, meso-Nordihydroguaiaretic,meso Nordihydroguaiaretic Acid
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D010972 Platelet Activating Factor A phospholipid derivative formed by PLATELETS; BASOPHILS; NEUTROPHILS; MONOCYTES; and MACROPHAGES. It is a potent platelet aggregating agent and inducer of systemic anaphylactic symptoms, including HYPOTENSION; THROMBOCYTOPENIA; NEUTROPENIA; and BRONCHOCONSTRICTION. AGEPC,Acetyl Glyceryl Ether Phosphorylcholine,PAF-Acether,Phosphorylcholine, Acetyl Glyceryl Ether,1-Alkyl-2-acetyl-sn-glycerophosphocholine,Platelet Aggregating Factor,Platelet Aggregation Enhancing Factor,Platelet-Activating Substance,Thrombocyte Aggregating Activity,1 Alkyl 2 acetyl sn glycerophosphocholine,Aggregating Factor, Platelet,Factor, Platelet Activating,PAF Acether,Platelet Activating Substance
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell

Related Publications

I Kimura, and M Nakagawa, and S Kobayashi, and M Kimura
January 1987, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience,
I Kimura, and M Nakagawa, and S Kobayashi, and M Kimura
January 1987, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience,
I Kimura, and M Nakagawa, and S Kobayashi, and M Kimura
December 1994, European journal of pharmacology,
I Kimura, and M Nakagawa, and S Kobayashi, and M Kimura
July 1997, Anesthesia and analgesia,
I Kimura, and M Nakagawa, and S Kobayashi, and M Kimura
June 1991, The Journal of physiology,
I Kimura, and M Nakagawa, and S Kobayashi, and M Kimura
June 1992, Neuron,
I Kimura, and M Nakagawa, and S Kobayashi, and M Kimura
August 1998, Journal of neuroimmunology,
I Kimura, and M Nakagawa, and S Kobayashi, and M Kimura
February 1994, Neuroscience letters,
I Kimura, and M Nakagawa, and S Kobayashi, and M Kimura
September 1981, Prostaglandins,
I Kimura, and M Nakagawa, and S Kobayashi, and M Kimura
November 2001, Journal of neurobiology,
Copied contents to your clipboard!