Thyroidal stimulation of tubulin and actin in primary cultures of neuronal and glial cells of rat brain. 1991

A De, and S Chaudhury, and P K Sarkar
Department of Cell Biology, Indian Institute of Chemical Biology, Calcutta.

The influence of triiodothyronine (T3) on the level of tubulin and other proteins in primary cultures of neuronal (N) and glial (G) cells from rat brain has been investigated. Quantitation of tubulin by [3H]colchicine binding assay revealed that when cells from 1 day rat brain were cultured for 18 hr with physiological doses (0.5-5 nM) of T3, the hormone elicited 35-40% increase in the soluble (30,000 g supernatant) tubulin content of G cells only. This stimulation was age-dependent and occurred neonatally at a time corresponding to the onset of synaptogenesis. In mouse and chick brain also, [3H]colchicine binding assay showed a similar selective stimulation of the soluble tubulin content of G cells by T3 with virtually no effect on N cells. However, SDS-polyacrylamide gel electrophoresis of the total proteins in the 30,000 g supernatants from N and C cells of rat brain, labeled for 18 hr with [14C]leucine in the presence of T3, revealed that T3 elicited 2-3-fold enhancement of radiolabeled tubulin in the N cells which is relatively greater than the 1.5-fold increase seen in the G cells. Analysis of the autoradiograms of these labeled proteins also revealed that in addition to tubulin, T3 stimulated the accumulation of radiolabeled actin by 1.5- and 2-fold in N cells and G cells respectively. Similar electrophoretic analysis of the solubilized labeled proteins in the 30,000 g pellets from N and G cells indicated that the failure to detect the stimulation of tubulin in the 30,000 g supernatants from N cells by [3H]colchicine binding assay could be at least partly due to rapid translocation of the dimeric soluble tubulin into insoluble membrane fractions or due to presence of higher oligomeric forms of tubulin which are insensitive to [3H]colchicine binding assay.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D003078 Colchicine A major alkaloid from Colchicum autumnale L. and found also in other Colchicum species. Its primary therapeutic use is in the treatment of gout, but it has been used also in the therapy of familial Mediterranean fever (PERIODIC DISEASE). Colchicine, (+-)-Isomer,Colchicine, (R)-Isomer
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein

Related Publications

A De, and S Chaudhury, and P K Sarkar
March 1988, Journal of neuroscience research,
A De, and S Chaudhury, and P K Sarkar
March 1977, The Journal of biological chemistry,
A De, and S Chaudhury, and P K Sarkar
October 1986, Journal of neurochemistry,
A De, and S Chaudhury, and P K Sarkar
December 1988, Indian journal of biochemistry & biophysics,
A De, and S Chaudhury, and P K Sarkar
December 1987, Brain research,
A De, and S Chaudhury, and P K Sarkar
December 1995, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience,
A De, and S Chaudhury, and P K Sarkar
July 1987, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!