Characterization of simian virus 40 tsA58 transcriptional intermediates at restrictive temperatures: relationship between DNA replication and transcription. 1977

E H Birkenmeier, and E May, and N P Salzman

When nuclei from simian virus 40 (SV40)-infected cells are lysed with Sarkosyl and the chromatin is pelleted, the supernatant fluid contains a nucleoprotein complex capable of synthesizing viral RNA (Laub and Aloni, Virology 75:346-354, 1976; Gariglio and Mousset, FEBS Lett. 56:149-155, 1975). The level of activity of the RNA polymerase in the complex increased during infection in parallel with the amount of viral DNA that had been synthesized. If cells infected at 33 degrees C with the SV40 mutant tsA 58 were shifted to the nonpermissive temperature of 40 degrees C at any time between 18 and 48 h postinfection, no viral DNA replication was detected after 45 min and no new rounds of synthesis were initiated after 20 to 30 min. However, after this shift, polymerase activity associated with the nucleo-protein complex did continue to increase for 5 h, at which time it reached a plateau. There was an increase of RNA synthesized from both the early (E) and late (L) SV40 DNA strands, and there was a threefold increase in the ratio of early-to-late RNA species after the shift. In comparable experiments with cells infected with wild-type virions, no increase in polymerase activity occurred because of the temperature change alone. At 33 degrees C, the relative amount of RNA transcribed from the wild-type E-strand was less than tsA 58 at 33 degrees C and did not increase after a shift to 40 degrees C. The tsA 58 transcriptional complexes extracted from cells grown at 33 degrees C sedimented heterogeneously in sucrose gradients, with a peak near 26S. There were no detectable alterations in the sedimentation properties of the complexes when tsA 58-infected cells were shifted to 40 degrees C for 2 h. We conclude that continued synthesis of viral DNA is not an obligatory prerequisite for maintenance of late viral transcription nor is the sedimentation of the transcriptional complex at 26S related to actively replicating DNA molecules serving as templates for transcription. Further, an increase in late transcription can occur under conditions where reinitiation of viral DNA synthesis is prevented. The increase in the synthesis of early and late RNA at the restrictive temperature without concurrent DNA synthesis is discussed in relationship to the function of the A gene product.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D012321 DNA-Directed RNA Polymerases Enzymes that catalyze DNA template-directed extension of the 3'-end of an RNA strand one nucleotide at a time. They can initiate a chain de novo. In eukaryotes, three forms of the enzyme have been distinguished on the basis of sensitivity to alpha-amanitin, and the type of RNA synthesized. (From Enzyme Nomenclature, 1992). DNA-Dependent RNA Polymerases,RNA Polymerases,Transcriptases,DNA-Directed RNA Polymerase,RNA Polymerase,Transcriptase,DNA Dependent RNA Polymerases,DNA Directed RNA Polymerase,DNA Directed RNA Polymerases,Polymerase, DNA-Directed RNA,Polymerase, RNA,Polymerases, DNA-Dependent RNA,Polymerases, DNA-Directed RNA,Polymerases, RNA,RNA Polymerase, DNA-Directed,RNA Polymerases, DNA-Dependent,RNA Polymerases, DNA-Directed
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D013501 Surface-Active Agents Agents that modify interfacial tension of water; usually substances that have one lipophilic and one hydrophilic group in the molecule; includes soaps, detergents, emulsifiers, dispersing and wetting agents, and several groups of antiseptics. Surface Active Agent,Surface-Active Agent,Surfactant,Surfactants,Tenside,Amphiphilic Agents,Surface Active Agents,Tensides,Active Agent, Surface,Active Agents, Surface,Agent, Surface Active,Agent, Surface-Active,Agents, Amphiphilic,Agents, Surface Active,Agents, Surface-Active
D013539 Simian virus 40 A species of POLYOMAVIRUS originally isolated from Rhesus monkey kidney tissue. It produces malignancy in human and newborn hamster kidney cell cultures. SV40 Virus,Vacuolating Agent,Polyomavirus macacae,SV 40 Virus,SV 40 Viruses,SV40 Viruses,Vacuolating Agents
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures

Related Publications

E H Birkenmeier, and E May, and N P Salzman
July 1973, Proceedings of the National Academy of Sciences of the United States of America,
E H Birkenmeier, and E May, and N P Salzman
December 1977, Proceedings of the National Academy of Sciences of the United States of America,
E H Birkenmeier, and E May, and N P Salzman
January 1979, Biochimie,
E H Birkenmeier, and E May, and N P Salzman
December 1990, Journal of virology,
E H Birkenmeier, and E May, and N P Salzman
April 1974, Proceedings of the National Academy of Sciences of the United States of America,
E H Birkenmeier, and E May, and N P Salzman
September 1982, Journal of virology,
E H Birkenmeier, and E May, and N P Salzman
February 1973, Journal of molecular biology,
E H Birkenmeier, and E May, and N P Salzman
November 1972, Proceedings of the National Academy of Sciences of the United States of America,
E H Birkenmeier, and E May, and N P Salzman
January 1979, Cold Spring Harbor symposia on quantitative biology,
E H Birkenmeier, and E May, and N P Salzman
June 1992, Molecular and cellular biology,
Copied contents to your clipboard!