Adenosine transport in rat liver plasma membrane vesicles. 1991

R H Moseley, and S Jarose, and P Permoad
Department of Internal Medicine, Veterans Affairs Medical Center, Ann Arbor, Michigan.

Liver plasma membrane ecto-ATPase activity is largely restricted to the bile canalicular membrane. To determine whether a transport process is also selectively present on this membrane surface to reclaim adenosine derived from the intracanalicular degradation of ATP, the characteristics of hepatic nucleoside transport were examined in canalicular (cLPM) and basolateral (blLPM) rat liver plasma membrane vesicles. In the presence of the adenosine deaminase inhibitor, deoxycoformycin, an inwardly directed Na+ gradient markedly stimulated [3H]adenosine uptake in cLPM vesicles. Canalicular Na(+)-dependent [3H]adenosine uptake was enhanced by an intravesicular-negative membrane potential and inhibited by dissipation of the Na+ gradient with gramicidin D. Both purine and pyrimidine nucleosides inhibited canalicular adenosine transport. 6-[(4-Nitrobenzyl)thio]-9-beta-D-ribofuranosylpurine, an inhibitor of nucleoside transport in erythrocytes and nonepithelial cells, had no effect on canalicular adenosine transport. Canalicular Na(+)-dependent [3H]adenosine uptake exhibited saturability with a Michaelis-Menten constant of 8.3 microM and a maximum transport rate of 7.6 pmol.5 s-1.mg protein-1. In contrast, [3H]adenosine uptake in blLPM vesicles was not stimulated by an inwardly directed Na+ gradient. These findings demonstrate asymmetric distribution of hepatic Na(+)-dependent nucleoside transport. Reclamation of intracanalicular adenosine resulting from ecto-ATPase activity may explain the presence of this transport process selectively on the bile canalicular membrane.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D002412 Cations Positively charged atoms, radicals or groups of atoms which travel to the cathode or negative pole during electrolysis. Cation
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D000042 Absorption The physical or physiological processes by which substances, tissue, cells, etc. take up or take in other substances or energy.
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001648 Bile Canaliculi Minute intercellular channels that occur between liver cells and carry bile towards interlobar bile ducts. Also called bile capillaries. Bile Canaliculus,Canaliculi, Bile,Canaliculus, Bile
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

R H Moseley, and S Jarose, and P Permoad
March 1988, Pflugers Archiv : European journal of physiology,
R H Moseley, and S Jarose, and P Permoad
July 1996, Hepatology (Baltimore, Md.),
R H Moseley, and S Jarose, and P Permoad
June 1992, The Journal of membrane biology,
R H Moseley, and S Jarose, and P Permoad
May 1993, Journal of developmental physiology,
R H Moseley, and S Jarose, and P Permoad
July 1992, Journal of developmental physiology,
R H Moseley, and S Jarose, and P Permoad
November 1994, The American journal of physiology,
R H Moseley, and S Jarose, and P Permoad
September 1978, The Biochemical journal,
R H Moseley, and S Jarose, and P Permoad
December 1984, Journal of bioenergetics and biomembranes,
R H Moseley, and S Jarose, and P Permoad
July 1993, Biochimica et biophysica acta,
R H Moseley, and S Jarose, and P Permoad
September 1992, The American journal of physiology,
Copied contents to your clipboard!