Antipsychotic drug actions on gene modulation and signaling mechanisms. 2009

Raffaella Molteni, and Francesca Calabrese, and Giorgio Racagni, and Fabio Fumagalli, and Marco Andrea Riva
Center of Neuropharmacology, Department of Pharmacological Sciences, Universita' degli Studi di Milano, Milan, Italy.

Schizophrenia is a debilitating chronic mental disorder characterized by significant lifetime risk and high social costs. Although its etiology remains unknown, many of its symptoms may be mitigated by treatment with antipsychotic drugs (APDs). These compounds, generally classified as first- or second-generation antipsychotics, have complex receptor profiles that may account for short-term clinical response and normalization of acute manifestation of the disease. However, APDs have additional therapeutic properties that may not be directly related to receptor mechanisms, but rather involve neuroadaptive changes in selected brain regions. Indeed the neurodevelopmental origin of schizophrenia suggests that the disease is characterized by neuroanatomical and pathophysiological impairments that, at molecular level, may reflect compromised neuroplasticity; the process by which the brain adapts to changes in a specific environment. Accordingly, it is possible that the long-term clinical efficacy of APDs might result from their ability in modulating systems crucially involved in neuroplasticity and cellular resilience. We have reviewed and discussed the results of several studies investigating the post-receptor mechanisms in the action of APDs. We specifically focused on intracellular signaling cascades (PKA, DARPP-32, MAPK, Akt/GSK-3, beta arrestin-2), neurotrophic factors and the glutamatergic system as important mediators for antipsychotic drug induced-neuroplasticity. Altogether, these data highlight the possibility that post-receptor mechanisms will eventually be promising targets for the development of novel drugs that, through their impact on neuroplasticity, may contribute to the improved treatment of patients diagnosed with schizophrenia.

UI MeSH Term Description Entries
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012559 Schizophrenia A severe emotional disorder of psychotic depth characteristically marked by a retreat from reality with delusion formation, HALLUCINATIONS, emotional disharmony, and regressive behavior. Dementia Praecox,Schizophrenic Disorders,Disorder, Schizophrenic,Disorders, Schizophrenic,Schizophrenias,Schizophrenic Disorder
D014150 Antipsychotic Agents Agents that control agitated psychotic behavior, alleviate acute psychotic states, reduce psychotic symptoms, and exert a quieting effect. They are used in SCHIZOPHRENIA; senile dementia; transient psychosis following surgery; or MYOCARDIAL INFARCTION; etc. These drugs are often referred to as neuroleptics alluding to the tendency to produce neurological side effects, but not all antipsychotics are likely to produce such effects. Many of these drugs may also be effective against nausea, emesis, and pruritus. Antipsychotic,Antipsychotic Agent,Antipsychotic Drug,Antipsychotic Medication,Major Tranquilizer,Neuroleptic,Neuroleptic Agent,Neuroleptic Drug,Neuroleptics,Tranquilizing Agents, Major,Antipsychotic Drugs,Antipsychotic Effect,Antipsychotic Effects,Antipsychotics,Major Tranquilizers,Neuroleptic Agents,Neuroleptic Drugs,Tranquillizing Agents, Major,Agent, Antipsychotic,Agent, Neuroleptic,Drug, Antipsychotic,Drug, Neuroleptic,Effect, Antipsychotic,Major Tranquilizing Agents,Major Tranquillizing Agents,Medication, Antipsychotic,Tranquilizer, Major
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D017448 Receptors, Dopamine D2 A subfamily of G-PROTEIN-COUPLED RECEPTORS that bind the neurotransmitter DOPAMINE and modulate its effects. D2-class receptor genes contain INTRONS, and the receptors inhibit ADENYLYL CYCLASES. Dopamine D2 Receptors,Dopamine-D2 Receptor,D2 Receptors, Dopamine,Dopamine D2 Receptor,Receptor, Dopamine-D2
D017470 Receptors, Glutamate Cell-surface proteins that bind glutamate and trigger changes which influence the behavior of cells. Glutamate receptors include ionotropic receptors (AMPA, kainate, and N-methyl-D-aspartate receptors), which directly control ion channels, and metabotropic receptors which act through second messenger systems. Glutamate receptors are the most common mediators of fast excitatory synaptic transmission in the central nervous system. They have also been implicated in the mechanisms of memory and of many diseases. Excitatory Amino Acid Receptors,Glutamate Receptors,Receptors, Excitatory Amino Acid,Excitatory Amino Acid Receptor,Glutamate Receptor,Receptor, Glutamate

Related Publications

Raffaella Molteni, and Francesca Calabrese, and Giorgio Racagni, and Fabio Fumagalli, and Marco Andrea Riva
July 2018, The American journal of psychiatry,
Raffaella Molteni, and Francesca Calabrese, and Giorgio Racagni, and Fabio Fumagalli, and Marco Andrea Riva
January 1967, Advances in pharmacology,
Raffaella Molteni, and Francesca Calabrese, and Giorgio Racagni, and Fabio Fumagalli, and Marco Andrea Riva
January 2012, Handbook of experimental pharmacology,
Raffaella Molteni, and Francesca Calabrese, and Giorgio Racagni, and Fabio Fumagalli, and Marco Andrea Riva
January 2008, Progress in brain research,
Raffaella Molteni, and Francesca Calabrese, and Giorgio Racagni, and Fabio Fumagalli, and Marco Andrea Riva
January 2011, Frontiers in neuroanatomy,
Raffaella Molteni, and Francesca Calabrese, and Giorgio Racagni, and Fabio Fumagalli, and Marco Andrea Riva
January 1998, European psychiatry : the journal of the Association of European Psychiatrists,
Raffaella Molteni, and Francesca Calabrese, and Giorgio Racagni, and Fabio Fumagalli, and Marco Andrea Riva
January 1998, European psychiatry : the journal of the Association of European Psychiatrists,
Raffaella Molteni, and Francesca Calabrese, and Giorgio Racagni, and Fabio Fumagalli, and Marco Andrea Riva
October 2003, Progress in neuro-psychopharmacology & biological psychiatry,
Raffaella Molteni, and Francesca Calabrese, and Giorgio Racagni, and Fabio Fumagalli, and Marco Andrea Riva
January 1997, Clinical neuroscience (New York, N.Y.),
Raffaella Molteni, and Francesca Calabrese, and Giorgio Racagni, and Fabio Fumagalli, and Marco Andrea Riva
October 2008, Molecular psychiatry,
Copied contents to your clipboard!