MAP2 immunostaining in thick sections for early ischemic stroke infarct volume in non-human primate brain. 2009

Alexander Kharlamov, and George C LaVerde, and Edwin M Nemoto, and Charles A Jungreis, and Victor E Yushmanov, and Stephen C Jones, and Fernando E Boada
Department of Anesthesiology, Allegheny-Singer Research Institute, Pittsburgh, PA 15212, United States.

The delineation of early infarction in large gyrencephalic brain cannot be accomplished with triphenyl-tetrazolium chloride (TTC) due to its limitations in the early phase, nor can it be identified with microtubule-associated protein 2 (MAP2) immunohistochemistry, due to the fragility of large thin sections. We hypothesize that MAP2 immunostaining of thick brain sections can accurately identify early ischemia in the entire monkey brain. Using ischemic brains of one rat and three monkeys, a thick-section MAP2 immunostaining protocol was developed to outline the infarct region over the entire non-human primate brain. Comparison of adjacent thick and thin sections in a rat brain indicated complete correspondence between ischemic regions (100.4mm(3)+/-1.2%, n=7, p=0.44). Thick sections in monkey brain possessed the increased structural stability necessary for the extensive MAP2 immunostaining procedure permitting quantification of the ischemic region as a percent of total monkey brain, giving infarct volumes of 11.4, 16.3, and 19.0% of total brain. Stacked 2D images of the intact thick brain tissue sections provided a 3D representation for comparison to MRI images. The infarct volume of 16.1cm(3) from the MAP2 sections registered with MRI images agreed well with the volume calculated directly from the stained sections of 16.6 cm(3). Thick brain tissue section MAP2 immunostaining provides a new method for determining infarct volume over the entire brain at early time points in a non-human primate model of ischemic stroke.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008254 Macaca nemestrina A species of the genus MACACA which inhabits Malaya, Sumatra, and Borneo. It is one of the most arboreal species of Macaca. The tail is short and untwisted. M. leonina,Macaca nemestrina leonina,Macaca nemestrina pagensis,Macaca nemestrina siberu,Macaca siberu,Monkey, Pig-Tailed,Pagai Macaque,Pig-Tail Macaque,Pig-Tailed Macaque,Pig-Tailed Monkey,M. pagensis,Macaca pagensis,Monkey, Pigtail,Monkey, Pigtailed,Pigtail Macaque,Macaque, Pagai,Macaque, Pig-Tail,Macaque, Pig-Tailed,Macaque, Pigtail,Monkey, Pig Tailed,Pagai Macaques,Pig Tail Macaque,Pig Tailed Macaque,Pig Tailed Monkey,Pig-Tail Macaques,Pig-Tailed Macaques,Pig-Tailed Monkeys,Pigtail Macaques,Pigtail Monkey,Pigtail Monkeys,Pigtailed Monkey,Pigtailed Monkeys
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008297 Male Males
D008869 Microtubule-Associated Proteins High molecular weight proteins found in the MICROTUBULES of the cytoskeletal system. Under certain conditions they are required for TUBULIN assembly into the microtubules and stabilize the assembled microtubules. Ensconsin,Epithelial MAP, 115 kDa,Epithelial Microtubule-Associate Protein, 115 kDa,MAP4,Microtubule Associated Protein,Microtubule Associated Protein 4,Microtubule Associated Protein 7,Microtubule-Associated Protein,Microtubule-Associated Protein 7,E-MAP-115,MAP1 Microtubule-Associated Protein,MAP2 Microtubule-Associated Protein,MAP3 Microtubule-Associated Protein,Microtubule Associated Proteins,Microtubule-Associated Protein 1,Microtubule-Associated Protein 2,Microtubule-Associated Protein 3,7, Microtubule-Associated Protein,Associated Protein, Microtubule,E MAP 115,Epithelial Microtubule Associate Protein, 115 kDa,MAP1 Microtubule Associated Protein,MAP2 Microtubule Associated Protein,MAP3 Microtubule Associated Protein,Microtubule Associated Protein 1,Microtubule Associated Protein 2,Microtubule Associated Protein 3,Microtubule-Associated Protein, MAP1,Microtubule-Associated Protein, MAP2,Microtubule-Associated Protein, MAP3,Protein 7, Microtubule-Associated,Protein, Microtubule Associated,Protein, Microtubule-Associated
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002544 Cerebral Infarction The formation of an area of NECROSIS in the CEREBRUM caused by an insufficiency of arterial or venous blood flow. Infarcts of the cerebrum are generally classified by hemisphere (i.e., left vs. right), lobe (e.g., frontal lobe infarction), arterial distribution (e.g., INFARCTION, ANTERIOR CEREBRAL ARTERY), and etiology (e.g., embolic infarction). Anterior Choroidal Artery Infarction,Cerebral Infarct,Infarction, Cerebral,Posterior Choroidal Artery Infarction,Subcortical Infarction,Cerebral Infarction, Left Hemisphere,Cerebral Infarction, Right Hemisphere,Cerebral, Left Hemisphere, Infarction,Cerebral, Right Hemisphere, Infarction,Infarction, Cerebral, Left Hemisphere,Infarction, Cerebral, Right Hemisphere,Infarction, Left Hemisphere, Cerebral,Infarction, Right Hemisphere, Cerebral,Left Hemisphere, Cerebral Infarction,Left Hemisphere, Infarction, Cerebral,Right Hemisphere, Cerebral Infarction,Right Hemisphere, Infarction, Cerebral,Cerebral Infarctions,Cerebral Infarcts,Infarct, Cerebral,Infarction, Subcortical,Infarctions, Cerebral,Infarctions, Subcortical,Infarcts, Cerebral,Subcortical Infarctions
D002545 Brain Ischemia Localized reduction of blood flow to brain tissue due to arterial obstruction or systemic hypoperfusion. This frequently occurs in conjunction with brain hypoxia (HYPOXIA, BRAIN). Prolonged ischemia is associated with BRAIN INFARCTION. Cerebral Ischemia,Ischemic Encephalopathy,Encephalopathy, Ischemic,Ischemia, Cerebral,Brain Ischemias,Cerebral Ischemias,Ischemia, Brain,Ischemias, Cerebral,Ischemic Encephalopathies
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Alexander Kharlamov, and George C LaVerde, and Edwin M Nemoto, and Charles A Jungreis, and Victor E Yushmanov, and Stephen C Jones, and Fernando E Boada
January 2008, Journal of the neurological sciences,
Alexander Kharlamov, and George C LaVerde, and Edwin M Nemoto, and Charles A Jungreis, and Victor E Yushmanov, and Stephen C Jones, and Fernando E Boada
July 2012, Neuroradiology,
Alexander Kharlamov, and George C LaVerde, and Edwin M Nemoto, and Charles A Jungreis, and Victor E Yushmanov, and Stephen C Jones, and Fernando E Boada
January 2016, Acta neurochirurgica. Supplement,
Alexander Kharlamov, and George C LaVerde, and Edwin M Nemoto, and Charles A Jungreis, and Victor E Yushmanov, and Stephen C Jones, and Fernando E Boada
January 2021, Bio-protocol,
Alexander Kharlamov, and George C LaVerde, and Edwin M Nemoto, and Charles A Jungreis, and Victor E Yushmanov, and Stephen C Jones, and Fernando E Boada
June 2014, Journal of child neurology,
Alexander Kharlamov, and George C LaVerde, and Edwin M Nemoto, and Charles A Jungreis, and Victor E Yushmanov, and Stephen C Jones, and Fernando E Boada
May 2015, Stroke,
Alexander Kharlamov, and George C LaVerde, and Edwin M Nemoto, and Charles A Jungreis, and Victor E Yushmanov, and Stephen C Jones, and Fernando E Boada
November 2008, Annals of neurology,
Alexander Kharlamov, and George C LaVerde, and Edwin M Nemoto, and Charles A Jungreis, and Victor E Yushmanov, and Stephen C Jones, and Fernando E Boada
January 2012, Journal of vascular and interventional radiology : JVIR,
Alexander Kharlamov, and George C LaVerde, and Edwin M Nemoto, and Charles A Jungreis, and Victor E Yushmanov, and Stephen C Jones, and Fernando E Boada
December 2016, Medical science monitor : international medical journal of experimental and clinical research,
Alexander Kharlamov, and George C LaVerde, and Edwin M Nemoto, and Charles A Jungreis, and Victor E Yushmanov, and Stephen C Jones, and Fernando E Boada
January 2008, Neuroepidemiology,
Copied contents to your clipboard!