Predicting the carcinogenicity of chemicals in humans from rodent bioassay data. 1991

G Goodman, and R Wilson
Department of Physics, Harvard University, Cambridge, MA 02138.

Regulatory agencies currently rely on rodent carcinogenicity bioassay data to predict whether or not a given chemical poses a carcinogenic threat to humans. We argue that it is always more useful to know a chemical's carcinogenic potency (with confidence limits) than to be able to say only qualitatively that it has been found to be a carcinogen. In a typical bioassay, a chemical is administered to groups of 50 to 100 rodents at the highest feasible level (the maximum tolerated dose) and rarely at less than 1/10 this dose in order to maximize the statistical significance of any increase in tumors that might result. Recently, much experimental work has focused on the mechanisms by which site-specific toxicity arising from chronic administration at the maximum tolerated dose may lead to carcinogenicity. Extrapolation of high-dose results to low doses does not take into consideration the possibility of a threshold dose, below which the carcinogenic potency is much lower or even zero. Threshold dose-response phenomena may be much more relevant to the etiology of cancer in the rodent bioassays than was earlier realized; if so, there is an even greater need for establishing dose-dependent potency estimates. The emphasis of this review is on the interspecies comparison of high-dose potencies. The qualitative and quantitative comparison of carcinogenicities between mice and rats and between rodents and humans is reviewed and discussed. We conclude that there is a good qualitative (yes/no) correlation for both the rat/mouse and the rodent/human comparison. There is also a good correlation of the carcinogenic potencies between rats and mice, and the upper limits on potencies in humans are consistent with rodent potencies for those chemicals for which human exposure data are available. For the rodent/human comparison, the best estimate of the interspecies potency factor is lognormally distributed around 1 when the potencies in both species are measured in units of (mg/kg-day)-1.

UI MeSH Term Description Entries
D009374 Neoplasms, Experimental Experimentally induced new abnormal growth of TISSUES in animals to provide models for studying human neoplasms. Experimental Neoplasms,Experimental Neoplasm,Neoplasm, Experimental
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004813 Epidemiology Field concerned with the determination of causes, incidence, and characteristic behavior of disease outbreaks affecting human populations. It includes the interrelationships of host, agent, and environment as related to the distribution and control of disease. Social Epidemiology,Epidemiologies, Social,Epidemiology, Social,Social Epidemiologies
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001681 Biological Assay A method of measuring the effects of a biologically active substance using an intermediate in vivo or in vitro tissue or cell model under controlled conditions. It includes virulence studies in animal fetuses in utero, mouse convulsion bioassay of insulin, quantitation of tumor-initiator systems in mouse skin, calculation of potentiating effects of a hormonal factor in an isolated strip of contracting stomach muscle, etc. Bioassay,Assay, Biological,Assays, Biological,Biologic Assay,Biologic Assays,Assay, Biologic,Assays, Biologic,Bioassays,Biological Assays
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D015197 Carcinogenicity Tests Tests to experimentally measure the tumor-producing/cancer cell-producing potency of an agent by administering the agent (e.g., benzanthracenes) and observing the quantity of tumors or the cell transformation developed over a given period of time. The carcinogenicity value is usually measured as milligrams of agent administered per tumor developed. Though this test differs from the DNA-repair and bacterial microsome MUTAGENICITY TESTS, researchers often attempt to correlate the finding of carcinogenicity values and mutagenicity values. Tumorigenicity Tests,Carcinogen Tests,Carcinogenesis Tests,Carcinogenic Activity Tests,Carcinogenic Potency Tests,Carcinogen Test,Carcinogenesis Test,Carcinogenic Activity Test,Carcinogenic Potency Test,Carcinogenicity Test,Potency Test, Carcinogenic,Potency Tests, Carcinogenic,Test, Carcinogen,Test, Carcinogenesis,Test, Carcinogenic Activity,Test, Carcinogenic Potency,Test, Carcinogenicity,Test, Tumorigenicity,Tests, Carcinogen,Tests, Carcinogenesis,Tests, Carcinogenic Activity,Tests, Carcinogenic Potency,Tests, Carcinogenicity,Tests, Tumorigenicity,Tumorigenicity Test
D015982 Bias Any deviation of results or inferences from the truth, or processes leading to such deviation. Bias can result from several sources: one-sided or systematic variations in measurement from the true value (systematic error); flaws in study design; deviation of inferences, interpretations, or analyses based on flawed data or data collection; etc. There is no sense of prejudice or subjectivity implied in the assessment of bias under these conditions. Aggregation Bias,Bias, Aggregation,Bias, Ecological,Bias, Statistical,Bias, Systematic,Ecological Bias,Outcome Measurement Errors,Statistical Bias,Systematic Bias,Bias, Epidemiologic,Biases,Biases, Ecological,Biases, Statistical,Ecological Biases,Ecological Fallacies,Ecological Fallacy,Epidemiologic Biases,Experimental Bias,Fallacies, Ecological,Fallacy, Ecological,Scientific Bias,Statistical Biases,Truncation Bias,Truncation Biases,Bias, Experimental,Bias, Scientific,Bias, Truncation,Biase, Epidemiologic,Biases, Epidemiologic,Biases, Truncation,Epidemiologic Biase,Error, Outcome Measurement,Errors, Outcome Measurement,Outcome Measurement Error

Related Publications

G Goodman, and R Wilson
August 2003, Regulatory toxicology and pharmacology : RTP,
G Goodman, and R Wilson
September 2016, Critical reviews in toxicology,
G Goodman, and R Wilson
January 1994, Toxicologic pathology,
G Goodman, and R Wilson
October 1996, Environmental health perspectives,
G Goodman, and R Wilson
September 1995, The Journal of toxicological sciences,
G Goodman, and R Wilson
January 1994, Mutagenesis,
G Goodman, and R Wilson
September 1993, Quality assurance (San Diego, Calif.),
G Goodman, and R Wilson
January 1982, Progress in clinical and biological research,
G Goodman, and R Wilson
January 1997, Environmental and molecular mutagenesis,
Copied contents to your clipboard!