Cyanotoxins from black band disease of corals and from other coral reef environments. 2009

Miroslav Gantar, and Raju Sekar, and Laurie L Richardson
Department of Biological Sciences, Florida International University, University Park, Miami, FL 33199, USA. gantarm@fiu.edu

Many cyanobacteria produce cyanotoxins, which has been well documented from freshwater environments but not investigated to the same extent in marine environments. Cyanobacteria are an obligate component of the polymicrobial disease of corals known as black band disease (BBD). Cyanotoxins were previously shown to be present in field samples of BBD and in a limited number of BBD cyanobacterial cultures. These toxins were suggested as one of the mechanisms contributing to BBD-associated coral tissue lysis and death. In this work, we tested nine cyanobacterial isolates from BBD and additionally nine isolated from non-BBD marine sources for their ability to produce toxins. The presence of toxins was determined using cell extracts of laboratory grown cyanobacterial cultures using ELISA and the PP2A assay. Based on these tests, it was shown that cyanobacterial toxins belonging to the microcystin/nodularin group were produced by cyanobacteria originating from both BBD and non-BBD sources. Several environmental factors that can be encountered in the highly dynamic microenvironment of BBD were tested for their effect on both cyanobacterial growth yield and rate of toxin production using two of the BBD isolates of the genera Leptolyngbya and Geitlerinema. While toxin production was the highest under mixotrophic conditions (light and glucose) for the Leptolyngbya isolate, it was highest under photoautotrophic conditions for the Geitlerinema isolate. Our results show that toxin production among marine cyanobacteria is more widespread than previously documented, and we present data showing three marine cyanobacterial genera (Phormidium, Pseudanabaena, and Spirulina) are newly identified as cyanotoxin producers. We also show that cyanotoxin production by BBD cyanobacteria can be affected by environmental factors that are present in the microenvironment associated with this coral disease.

UI MeSH Term Description Entries
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008387 Marine Toxins Toxic or poisonous substances elaborated by marine flora or fauna. They include also specific, characterized poisons or toxins for which there is no more specific heading, like those from poisonous FISHES. Marine Biotoxins,Phycotoxins
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004777 Environment The external elements and conditions which surround, influence, and affect the life and development of an organism or population. Environmental Impact,Environmental Impacts,Impact, Environmental,Impacts, Environmental,Environments
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000087522 Cyanobacteria Toxins Toxic secondary metabolites produced CYANOBACTERIA. Cyanobacterial Neurotoxin,Cyanobacterial Neurotoxins,Cyanobacterial Toxins,Cyanotoxins,Neurotoxin, Cyanobacterial
D000458 Cyanobacteria A phylum of oxygenic photosynthetic bacteria comprised of unicellular to multicellular bacteria possessing CHLOROPHYLL a and carrying out oxygenic PHOTOSYNTHESIS. Cyanobacteria are the only known organisms capable of fixing both CARBON DIOXIDE (in the presence of light) and NITROGEN. Cell morphology can include nitrogen-fixing heterocysts and/or resting cells called akinetes. Formerly called blue-green algae, cyanobacteria were traditionally treated as ALGAE. Algae, Blue-Green,Blue-Green Bacteria,Cyanophyceae,Algae, Blue Green,Bacteria, Blue Green,Bacteria, Blue-Green,Blue Green Algae,Blue Green Bacteria,Blue-Green Algae
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001427 Bacterial Toxins Toxic substances formed in or elaborated by bacteria; they are usually proteins with high molecular weight and antigenicity; some are used as antibiotics and some to skin test for the presence of or susceptibility to certain diseases. Bacterial Toxin,Toxins, Bacterial,Toxin, Bacterial
D012336 RNA, Ribosomal, 16S Constituent of 30S subunit prokaryotic ribosomes containing 1600 nucleotides and 21 proteins. 16S rRNA is involved in initiation of polypeptide synthesis. 16S Ribosomal RNA,16S rRNA,RNA, 16S Ribosomal,Ribosomal RNA, 16S,rRNA, 16S

Related Publications

Miroslav Gantar, and Raju Sekar, and Laurie L Richardson
July 2010, FEMS microbiology ecology,
Miroslav Gantar, and Raju Sekar, and Laurie L Richardson
March 2017, Genomics data,
Miroslav Gantar, and Raju Sekar, and Laurie L Richardson
August 2014, Proceedings. Biological sciences,
Miroslav Gantar, and Raju Sekar, and Laurie L Richardson
June 2022, Royal Society open science,
Miroslav Gantar, and Raju Sekar, and Laurie L Richardson
July 1972, Science (New York, N.Y.),
Miroslav Gantar, and Raju Sekar, and Laurie L Richardson
October 2021, Microorganisms,
Miroslav Gantar, and Raju Sekar, and Laurie L Richardson
January 2012, Progress in molecular and subcellular biology,
Miroslav Gantar, and Raju Sekar, and Laurie L Richardson
June 2021, Global change biology,
Miroslav Gantar, and Raju Sekar, and Laurie L Richardson
October 2004, Applied and environmental microbiology,
Miroslav Gantar, and Raju Sekar, and Laurie L Richardson
June 2015, Science (New York, N.Y.),
Copied contents to your clipboard!