The velocity-related firing property of hippocampal place cells is dependent on self-movement. 2010

Xiaodong Lu, and David K Bilkey
Department of Psychology, University of Otago, Dunedin, New Zealand.

Hippocampal place cells have the interesting property of increasing their firing rate when a freely moving animal increases its running speed through the cell's place field. A previous study from this laboratory showed that this movement-related firing property is disrupted by lesions of the perirhinal cortex (PrhC). It is possible, therefore, that PrhC lesions disrupt speed-modulated sensory information such as optic flow or motor efferent or proprioceptive input that might be available to the hippocampus from the PrhC. To test this hypothesis, rats with single unit recording electrodes implanted in the CA1 region of the hippocampus received different levels of optic flow stimulation in both a freely moving and a passive movement condition. The effects of PrhC lesions were also tested. Although increasing the amount of optic flow information available decreased place field size, it had no discernable effect on the movement-firing rate relationship in the place cells of control animals run in the free-movement condition. In lesioned animals the relationship was disrupted, replicating our previous results. In the passive movement condition many place cells stopped firing. In those cells that did fire, however, the movement-firing rate relationship was no longer evident. These data indicate that the movement-firing rate relationship is not driven by vestibular or optic flow cues, but rather depends on either motor efferent or proprioceptive input, or that it results from some other form of input that may be modulated by self-motion, such as from the vibrissae.

UI MeSH Term Description Entries
D008297 Male Males
D009068 Movement The act, process, or result of passing from one place or position to another. It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. Movement may be used with reference to humans, vertebrate and invertebrate animals, and microorganisms. Differentiate also from MOTOR ACTIVITY, movement associated with behavior. Movements
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000704 Analysis of Variance A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable. ANOVA,Analysis, Variance,Variance Analysis,Analyses, Variance,Variance Analyses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001522 Behavior, Animal The observable response an animal makes to any situation. Autotomy Animal,Animal Behavior,Animal Behaviors
D013028 Space Perception The awareness of the spatial properties of objects; includes physical space. Perception, Space,Perceptions, Space,Space Perceptions
D014851 Wakefulness A state in which there is an enhanced potential for sensitivity and an efficient responsiveness to external stimuli. Wakefulnesses
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

Xiaodong Lu, and David K Bilkey
December 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Xiaodong Lu, and David K Bilkey
April 1991, Hippocampus,
Xiaodong Lu, and David K Bilkey
January 2001, Journal of neurophysiology,
Xiaodong Lu, and David K Bilkey
January 2012, Frontiers in neural circuits,
Xiaodong Lu, and David K Bilkey
January 2005, Hippocampus,
Xiaodong Lu, and David K Bilkey
August 2012, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Xiaodong Lu, and David K Bilkey
March 1998, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Xiaodong Lu, and David K Bilkey
June 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!