Uridine kinase activities and pyrimidine nucleoside phosphorylation in fluoropyrimidine-sensitive and -resistant cell lines of the Novikoff hepatoma. 1977

N Greenberg, and D E Schumm, and T E Webb

Uridine kinase, the rate-limiting enzyme in the activation (phosphorylation) of uridine and the corresponding chemotherapeutic analogues, is present as two isoenzymes localized exclusively in the cytosol of rapidly growing neoplasms, including the S-37 sarcoma, EL-4 leukaemia, HeLa cells (a human carcinoma) and the Novikoff hepatoma. The activities of the isolated isoenzymes are markedly decreased when the concentrations of ATP, phosphate or Mg2+ that are optimum in vitro are replaced by concentrations of ATP, phosphate or Mg2+ that are optimum in vitro are replaced by concentrations approximating to those found in vivo. Further, comparisons of the Km values of isolated uridine kinases with those for cellular uptake of pyrimidine nucleosides and their rate of intracellular phosphorylation suggest that nucleoside-transport systems play a rate-limiting role in nucleoside analogue activation and consequently that it is impossible to estimate the Km of uridine kinase in the intact cell. During the development of tumour-cell resistance to 5-fluorouracil or 5-fluorouridine in vivo there was an early differential increase in the activity of a low-affinity (high-Km) uridine kinase isoenzyme, as measured in cell extracts, and a 7-fold increase in the Km values for the uptake of both uridine and 5-fluorouridine into the intact resistant cells.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008113 Liver Neoplasms Tumors or cancer of the LIVER. Cancer of Liver,Hepatic Cancer,Liver Cancer,Cancer of the Liver,Cancer, Hepatocellular,Hepatic Neoplasms,Hepatocellular Cancer,Neoplasms, Hepatic,Neoplasms, Liver,Cancer, Hepatic,Cancer, Liver,Cancers, Hepatic,Cancers, Hepatocellular,Cancers, Liver,Hepatic Cancers,Hepatic Neoplasm,Hepatocellular Cancers,Liver Cancers,Liver Neoplasm,Neoplasm, Hepatic,Neoplasm, Liver
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D009374 Neoplasms, Experimental Experimentally induced new abnormal growth of TISSUES in animals to provide models for studying human neoplasms. Experimental Neoplasms,Experimental Neoplasm,Neoplasm, Experimental
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D010770 Phosphotransferases A rather large group of enzymes comprising not only those transferring phosphate but also diphosphate, nucleotidyl residues, and others. These have also been subdivided according to the acceptor group. (From Enzyme Nomenclature, 1992) EC 2.7. Kinases,Phosphotransferase,Phosphotransferases, ATP,Transphosphorylase,Transphosphorylases,Kinase,ATP Phosphotransferases
D011741 Pyrimidine Nucleosides Pyrimidines with a RIBOSE attached that can be phosphorylated to PYRIMIDINE NUCLEOTIDES. Nucleosides, Pyrimidine
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell

Related Publications

N Greenberg, and D E Schumm, and T E Webb
January 1978, Methods in enzymology,
N Greenberg, and D E Schumm, and T E Webb
February 1977, The Journal of biological chemistry,
N Greenberg, and D E Schumm, and T E Webb
March 1983, Biochemical and biophysical research communications,
N Greenberg, and D E Schumm, and T E Webb
May 2004, Drugs of today (Barcelona, Spain : 1998),
N Greenberg, and D E Schumm, and T E Webb
March 1982, Cancer research,
N Greenberg, and D E Schumm, and T E Webb
April 1982, Cancer research,
Copied contents to your clipboard!