Effects of purine nucleotides on photosynthetic electron transport in isolated chloroplasts. 1977

T Yagi, and Y Mukohata

The effects of guanylates and inosinates (and adenylates) on phosphorylation, ferricyanide reduction, and light-induced H+ uptake in spinach chloroplasts were studied. GDP, GTP, IDP, and ITP (but not GMP and IMP) stimulated the light-induced H+ uptake and partially inhibited ferricyanide reduction. Phosphate, arsenate, and phlorizin increased the extent of inhibition by these nucleotides and decreased the values of their apparent dissociation constants for the inhibition process. In the presence of phosphate (or arsenate), restoration of ferricyanide reduction from the level inhibited by guanylates and inosinates was observed as phosphorylation (or arsenylation) proceeded. These results suggest that phosphorylation of GDP and IDP as well as ADP takes place after two steps of nucleotide binding to the chloroplast coupling factor 1. The apparent dissociation constants of GDP and IDP for these two binding steps were estimated to be about 34 and 38 muM for the first and 110 and 160 muM for the second step, respectively (at pH 8.3, 15 degrees C). Above pH9, the ratio (P/delta-e) of the extent of phosphorylation to the increment of electron transport from the basal level measured in the presence of [ATP + Pi] or [ADP + Pi+ phlorizin], became increasingly large. When the electron transport level inhibited by dicyclohexyl-carbodiimide was taken to be the basal activity, the P/delta-e ratio remained almost constant (approximately 1) from pH 7.0 up to 10.

UI MeSH Term Description Entries
D007291 Inosine Monophosphate Inosine 5'-Monophosphate. A purine nucleotide which has hypoxanthine as the base and one phosphate group esterified to the sugar moiety. IMP,Inosinic Acid,Ribosylhypoxanthine Monophosphate,Inosinic Acids,Sodium Inosinate,Acid, Inosinic,Acids, Inosinic,Inosinate, Sodium,Monophosphate, Inosine,Monophosphate, Ribosylhypoxanthine
D010788 Photosynthesis The synthesis by organisms of organic chemical compounds, especially carbohydrates, from carbon dioxide using energy obtained from light rather than from the oxidation of chemical compounds. Photosynthesis comprises two separate processes: the light reactions and the dark reactions. In higher plants; GREEN ALGAE; and CYANOBACTERIA; NADPH and ATP formed by the light reactions drive the dark reactions which result in the fixation of carbon dioxide. (from Oxford Dictionary of Biochemistry and Molecular Biology, 2001) Calvin Cycle,Calvin-Benson Cycle,Calvin-Benson-Bassham Cycle,Carbon Fixation, Photosynthetic,Reductive Pentose Phosphate Cycle,Dark Reactions of Photosynthesis,Calvin Benson Bassham Cycle,Calvin Benson Cycle,Cycle, Calvin,Cycle, Calvin-Benson,Cycle, Calvin-Benson-Bassham,Photosynthesis Dark Reaction,Photosynthesis Dark Reactions,Photosynthetic Carbon Fixation
D011685 Purine Nucleotides Purines attached to a RIBOSE and a phosphate that can polymerize to form DNA and RNA. Nucleotides, Purine
D002736 Chloroplasts Plant cell inclusion bodies that contain the photosynthetic pigment CHLOROPHYLL, which is associated with the membrane of THYLAKOIDS. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of PHYTOPLANKTON such as HAPTOPHYTA; DINOFLAGELLATES; DIATOMS; and CRYPTOPHYTA. Chloroplast,Etioplasts,Etioplast
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D006157 Guanosine Monophosphate A guanine nucleotide containing one phosphate group esterified to the sugar moiety and found widely in nature. 5'-Guanylic Acid,Guanosine 5'-Monophosphate,5'-GMP,Guanylic Acid,5' Guanylic Acid,5'-Monophosphate, Guanosine,Acid, 5'-Guanylic,Acid, Guanylic,Guanosine 5' Monophosphate,Monophosphate, Guanosine
D000249 Adenosine Monophosphate Adenine nucleotide containing one phosphate group esterified to the sugar moiety in the 2'-, 3'-, or 5'-position. AMP,Adenylic Acid,2'-AMP,2'-Adenosine Monophosphate,2'-Adenylic Acid,5'-Adenylic Acid,Adenosine 2'-Phosphate,Adenosine 3'-Phosphate,Adenosine 5'-Phosphate,Adenosine Phosphate Dipotassium,Adenosine Phosphate Disodium,Phosphaden,2' Adenosine Monophosphate,2' Adenylic Acid,5' Adenylic Acid,5'-Phosphate, Adenosine,Acid, 2'-Adenylic,Acid, 5'-Adenylic,Adenosine 2' Phosphate,Adenosine 3' Phosphate,Adenosine 5' Phosphate,Dipotassium, Adenosine Phosphate,Disodium, Adenosine Phosphate,Monophosphate, 2'-Adenosine,Phosphate Dipotassium, Adenosine,Phosphate Disodium, Adenosine

Related Publications

T Yagi, and Y Mukohata
October 1970, Zeitschrift fur Naturforschung. Teil B, Chemie, Biochemie, Biophysik, Biologie und verwandte Gebiete,
T Yagi, and Y Mukohata
November 1975, Bulletin of environmental contamination and toxicology,
T Yagi, and Y Mukohata
July 1981, Biochimica et biophysica acta,
T Yagi, and Y Mukohata
October 1971, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!