Bilirubin diglucuronide transport by rat liver canalicular membrane vesicles: stimulation by bicarbonate ion. 1991

Y Adachi, and H Kobayashi, and Y Kurumi, and M Shouji, and M Kitano, and T Yamamoto
Second Department of Internal Medicine, Kinki University School of Medicine, Osaka, Japan.

The purpose of this study was to provide further insight into the mechanism of bilirubin diglucuronide excretion through the hepatocyte canalicular membrane by investigating the uptake of (3H)bilirubin diglucuronide by purified canalicular membrane vesicles of rat liver. The uptake was analyzed by a rapid filtration technique. The difference between vesicle-associated (3H)bilirubin diglucuronide at 37 degrees C and at 0 degree C during the initial 1 min was regarded as uptake. Twenty second uptake was saturated by increasing the (3H)bilirubin diglucuronide concentration at a vesicle-inside-directed 100 mmol/L KCl gradient (Km = 75 mumol/L, Vmax = 320 pmol/mg protein.20 sec at 37 degrees C). No sodium dependency was observed. When canalicular membrane vesicles were preincubated with nonlabeled bilirubin diglucuronide, the uptake increased 1.3-fold (transstimulation). Vesicle-inside-positive potential induced by valinomycin and potassium caused a 1.4-fold increase in the uptake. When Cl- was replaced by equivalent ion concentrations of SO4(2-), HCO3-, NO3- and SCN-, the uptake was 78%, 244%, 68% and 50%, respectively, and specific stimulation by HCO3- was observed (Km = 75 mumol/L, Vmax = 700 pmol/mg protein.20 sec at a vesicle-inside-directed 100 mmol/L KHCO3 gradient at 37 degrees C). The uptake was inhibited in a dose-dependent manner by the addition of 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid. The uptake was ATP independent. From these results, it was concluded that bilirubin diglucuronide transport through the canalicular membrane is carrier mediated, electrogenic and stimulated by HCO3-.

UI MeSH Term Description Entries
D007474 Ion Exchange Reversible chemical reaction between a solid, often one of the ION EXCHANGE RESINS, and a fluid whereby ions may be exchanged from one substance to another. This technique is used in water purification, in research, and in industry. Exchange, Ion
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001639 Bicarbonates Inorganic salts that contain the -HCO3 radical. They are an important factor in determining the pH of the blood and the concentration of bicarbonate ions is regulated by the kidney. Levels in the blood are an index of the alkali reserve or buffering capacity. Bicarbonate,Bicarbonate Ions,Hydrogen Carbonates,Bicarbonate Ion,Carbonic Acid Ions,Hydrogen Carbonate,Carbonate, Hydrogen,Carbonates, Hydrogen,Ion, Bicarbonate,Ions, Bicarbonate,Ions, Carbonic Acid
D001663 Bilirubin A bile pigment that is a degradation product of HEME. Bilirubin IX alpha,Bilirubin, (15E)-Isomer,Bilirubin, (4E)-Isomer,Bilirubin, (4E,15E)-Isomer,Bilirubin, Calcium Salt,Bilirubin, Disodium Salt,Bilirubin, Monosodium Salt,Calcium Bilirubinate,Hematoidin,delta-Bilirubin,Bilirubinate, Calcium,Calcium Salt Bilirubin,Disodium Salt Bilirubin,Monosodium Salt Bilirubin,Salt Bilirubin, Calcium,delta Bilirubin
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

Y Adachi, and H Kobayashi, and Y Kurumi, and M Shouji, and M Kitano, and T Yamamoto
April 1998, The Biochemical journal,
Y Adachi, and H Kobayashi, and Y Kurumi, and M Shouji, and M Kitano, and T Yamamoto
October 1987, The American journal of physiology,
Y Adachi, and H Kobayashi, and Y Kurumi, and M Shouji, and M Kitano, and T Yamamoto
February 2001, Hepatology research : the official journal of the Japan Society of Hepatology,
Y Adachi, and H Kobayashi, and Y Kurumi, and M Shouji, and M Kitano, and T Yamamoto
April 1984, The Journal of biological chemistry,
Y Adachi, and H Kobayashi, and Y Kurumi, and M Shouji, and M Kitano, and T Yamamoto
April 1985, The Journal of clinical investigation,
Y Adachi, and H Kobayashi, and Y Kurumi, and M Shouji, and M Kitano, and T Yamamoto
May 1992, The Biochemical journal,
Y Adachi, and H Kobayashi, and Y Kurumi, and M Shouji, and M Kitano, and T Yamamoto
September 1996, Journal of pharmaceutical sciences,
Y Adachi, and H Kobayashi, and Y Kurumi, and M Shouji, and M Kitano, and T Yamamoto
August 1991, Proceedings of the National Academy of Sciences of the United States of America,
Y Adachi, and H Kobayashi, and Y Kurumi, and M Shouji, and M Kitano, and T Yamamoto
May 1984, European journal of biochemistry,
Y Adachi, and H Kobayashi, and Y Kurumi, and M Shouji, and M Kitano, and T Yamamoto
November 1980, Canadian journal of biochemistry,
Copied contents to your clipboard!