Stomach lysozyme gene of the langur monkey: tests for convergence and positive selection. 1991

K W Swanson, and D M Irwin, and A C Wilson
Division of Biochemistry and Molecular Biology, University of California, Berkeley 94720.

Genomic blotting and enzymatic amplification show that the genome of the langur monkey (like that of other primates) contains only a single gene for lysozyme c, in contrast to another group of foregut fermenters, the ruminants, which have a multigene family encoding this protein. Therefore, the langur stomach lysozyme gene has probably evolved recently (i.e., within the period of monkey evolution) from a conventional primate lysozyme. The sequences of cDNAs for the stomach lysozyme of langur and the conventional lysozymes of three other Old World monkeys were determined. Identification of the promoter for the stomach gene and comparison to the human gene, which is expressed conventionally in macrophages, show that both lysozyme genes use the same promoter. This suggests that the difference in expression patterns is due to change(s) in enhancer or silencer regulatory elements. With the cDNA sequences the hypothesis that the langur stomach lysozyme has converged in amino acid sequence upon the stomach lysozymes of ruminants is tested. Consistent with the convergence hypothesis, only those sites that specify amino acids in the mature lysozyme are shared uniquely with ruminant lysozyme genes. None of the silent sites at third positions of codons or in noncoding regions support a link between the langur and ruminants. Statistical analysis based on silent sites rules out the possibility of horizontal transfer of a stomach lysozyme gene between the langur and ruminant lineages and supports the close relationship of the langur lysozyme gene to that of other monkeys.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009113 Muramidase A basic enzyme that is present in saliva, tears, egg white, and many animal fluids. It functions as an antibacterial agent. The enzyme catalyzes the hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in peptidoglycan and between N-acetyl-D-glucosamine residues in chitodextrin. EC 3.2.1.17. Lysozyme,Leftose,N-Acetylmuramide Glycanhydrolase,Glycanhydrolase, N-Acetylmuramide,N Acetylmuramide Glycanhydrolase
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D011323 Primates An order of mammals consisting of more than 300 species that include LEMURS; LORISIDAE; TARSIERS; MONKEYS; and HOMINIDS. They are characterized by a relatively large brain when compared with other terrestrial mammals, forward-facing eyes, the presence of a CALCARINE SULCUS, and specialized MECHANORECEPTORS in the hands and feet which allow the perception of light touch. Primate
D002520 Cercopithecidae The family of Old World monkeys and baboons consisting of two subfamilies: CERCOPITHECINAE and COLOBINAE. They are found in Africa and part of Asia. Catarrhina,Miopithecus talapoin,Monkey, Talapoin,Monkeys, Old World,Monkey, Old World,Old World Monkey,Old World Monkeys,Talapoin Monkey,Talapoin Monkeys,World Monkey, Old
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

K W Swanson, and D M Irwin, and A C Wilson
May 1998, Molecular biology and evolution,
K W Swanson, and D M Irwin, and A C Wilson
April 1996, Molecular phylogenetics and evolution,
K W Swanson, and D M Irwin, and A C Wilson
August 1968, Science (New York, N.Y.),
K W Swanson, and D M Irwin, and A C Wilson
November 2016, American journal of physiology. Gastrointestinal and liver physiology,
K W Swanson, and D M Irwin, and A C Wilson
August 2007, Molecular biology and evolution,
K W Swanson, and D M Irwin, and A C Wilson
January 1982, Folia primatologica; international journal of primatology,
K W Swanson, and D M Irwin, and A C Wilson
December 1965, The Journal of infectious diseases,
K W Swanson, and D M Irwin, and A C Wilson
February 2000, European journal of morphology,
K W Swanson, and D M Irwin, and A C Wilson
September 1992, Science (New York, N.Y.),
K W Swanson, and D M Irwin, and A C Wilson
January 1992, Voprosy onkologii,
Copied contents to your clipboard!