Assays to measure p53-dependent and -independent apoptosis. 2009

Darren C Phillips, and Sean P Garrison, and John R Jeffers, and Gerard P Zambetti
Department of Biochemistry, St Jude Children's Research Hospital, Memphis, TN, USA.

Paramount to the maintenance of normal tissue homeostasis is the induction of programmed cell death, otherwise known as apoptosis. Several disease states, including cancer, are characterized by an inability to remove unwanted cells due to a failure to commit to apoptosis. What is more, apoptosis is the central functional response behind many agents utilized in the treatment of cancer. Many of these antitumorigenic agents rely on the activation of the tumor suppressor p53. As the physiological "guardian of the genome," p53's normal function is to sense stressed or damaged cells and arrest proliferation, allowing time for cellular repair. However, if the damage is excessive, cells are removed prior to the onset of malignancy through apoptosis. Current chemotherapeutic strategies manipulate this property by damaging cells and turning on p53's transcriptional function, which consequently upregulates the expression of proapoptotic proteins such as Puma. We have also demonstrated that Puma is capable of inducing apoptosis independent of p53. In this regard, defects in the apoptotic machinery or in p53 function itself lead to a resistant phenotype that in cancer results in chemotherapeutic failure, and more often than not, poor prognosis. This chapter describes protocols for the determination of p53-dependent and -independent apoptosis utilizing primary cells from genetically altered mice.

UI MeSH Term Description Entries
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D013950 Thymus Gland A single, unpaired primary lymphoid organ situated in the MEDIASTINUM, extending superiorly into the neck to the lower edge of the THYROID GLAND and inferiorly to the fourth costal cartilage. It is necessary for normal development of immunologic function early in life. By puberty, it begins to involute and much of the tissue is replaced by fat. Thymus,Gland, Thymus,Glands, Thymus,Thymus Glands
D016159 Tumor Suppressor Protein p53 Nuclear phosphoprotein encoded by the p53 gene (GENES, P53) whose normal function is to control CELL PROLIFERATION and APOPTOSIS. A mutant or absent p53 protein has been found in LEUKEMIA; OSTEOSARCOMA; LUNG CANCER; and COLORECTAL CANCER. p53 Tumor Suppressor Protein,Cellular Tumor Antigen p53,Oncoprotein p53,TP53 Protein,TRP53 Protein,p53 Antigen,pp53 Phosphoprotein,Phosphoprotein, pp53
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D051017 Apoptosis Regulatory Proteins A large group of proteins that control APOPTOSIS. This family of proteins includes many ONCOGENE PROTEINS as well as a wide variety of classes of INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS such as CASPASES. Anti-Apoptotic Protein,Anti-Apoptotic Proteins,Apoptosis Inducing Protein,Apoptosis Inhibiting Protein,Apoptosis Regulatory Protein,Pro-Apoptotic Protein,Pro-Apoptotic Proteins,Programmed Cell Death Protein,Apoptosis Inducing Proteins,Apoptosis Inhibiting Proteins,Death Factors (Apoptosis),Programmed Cell Death Proteins,Survival Factors (Apoptosis),Anti Apoptotic Protein,Anti Apoptotic Proteins,Inducing Protein, Apoptosis,Inducing Proteins, Apoptosis,Inhibiting Protein, Apoptosis,Inhibiting Proteins, Apoptosis,Pro Apoptotic Protein,Pro Apoptotic Proteins,Protein, Anti-Apoptotic,Protein, Apoptosis Inducing,Protein, Apoptosis Inhibiting,Protein, Apoptosis Regulatory,Protein, Pro-Apoptotic,Proteins, Anti-Apoptotic,Proteins, Apoptosis Inducing,Proteins, Apoptosis Inhibiting,Proteins, Pro-Apoptotic,Regulatory Protein, Apoptosis,Regulatory Proteins, Apoptosis

Related Publications

Darren C Phillips, and Sean P Garrison, and John R Jeffers, and Gerard P Zambetti
October 1996, The Biochemical journal,
Darren C Phillips, and Sean P Garrison, and John R Jeffers, and Gerard P Zambetti
January 2005, Oncogene,
Darren C Phillips, and Sean P Garrison, and John R Jeffers, and Gerard P Zambetti
April 1993, Nature,
Darren C Phillips, and Sean P Garrison, and John R Jeffers, and Gerard P Zambetti
November 2000, The Journal of biological chemistry,
Darren C Phillips, and Sean P Garrison, and John R Jeffers, and Gerard P Zambetti
August 1995, Oncogene,
Darren C Phillips, and Sean P Garrison, and John R Jeffers, and Gerard P Zambetti
March 2010, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
Darren C Phillips, and Sean P Garrison, and John R Jeffers, and Gerard P Zambetti
August 1996, International journal of radiation oncology, biology, physics,
Darren C Phillips, and Sean P Garrison, and John R Jeffers, and Gerard P Zambetti
September 1995, Genes & development,
Darren C Phillips, and Sean P Garrison, and John R Jeffers, and Gerard P Zambetti
August 1997, Proceedings of the National Academy of Sciences of the United States of America,
Darren C Phillips, and Sean P Garrison, and John R Jeffers, and Gerard P Zambetti
October 1996, Molecular pharmacology,
Copied contents to your clipboard!