DNA of Epstein-Barr virus. II. Comparison of the molecular weights of restriction endonuclease fragments of the DNA of Epstein-Barr virus strains and identification of end fragments of the B95-8 strain. 1977

S D Hayward, and E Kieff

Incubation of the DNA of the B95-8 strain of Epstein-Barr virus [EBV (B95-8) DNA] with EcoRI, Hsu I, Sal I, or Kpn I restriction endonuclease yielded 8 to 15 fragments separable on 0.4% agarose gels and ranging in molecular weight from less than 1 to more than 30 x 10(6). Bam I and Bgl II yielded fragments smaller than 11 x 10(6). Preincubation of EBV (B95-8) DNA with lambda exonuclease resulted in a decrease in the Hsu I A and Sal I A and D fragments, indicating that these fragments are positioned near termini. The electrophoretic profiles of the fragments produced by cleavage of the DNA of the B95-8, HR-1, and Jijoye strains of EBV were each distinctive. The molecular weights of some EcoRI, Hsu I, and Sal I fragments from the DNA of the HR-1 strain of EBV [EBV (HR-1) DNA] and of EcoRI fragments of the DNA of the Jijoye strain of EBV were identical to that of fragments produced by cleavage of EBV (B95-8) DNA with the same enzyme, whereas others were unique to each strain. Some Hsu I, EcoRI, and Sal I fragments of EBV (HR-1) DNA and Kpn I fragments of EBV (B95-8) DNA were present in half-molar abundance relative to the majority of the fragments. In these instances, the sum of the molecular weights of the fragments was in excess of 10(8), the known molecular weight of EBV (HR-1) and (B95-8) DNA. The simplest interpretation of this finding is that each EBV (HR-1), and possibly also (B95-8), DNA preparation contains two populations of DNA molecules that differ in the arrangement of DNA sequences about a single point, such as has been described for herpes simplex virus DNA. Minor fragments could also be observed if there were more than one difference in primary structure of the DNAs. The data do not exclude more extensive heterogeneity in primary structure of the DNA of the HR-1 strain. However, the observation that the relative molar abundance of major and minor fragments of EBV (HR-1) DNA did not vary between preparations from cultures that had been maintained separately for several years favors the former hypothesis over the latter.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003851 Deoxyribonucleases Enzymes which catalyze the hydrolases of ester bonds within DNA. EC 3.1.-. DNAase,DNase,Deoxyribonuclease,Desoxyribonuclease,Desoxyribonucleases,Nucleases, DNA,Acid DNase,Alkaline DNase,DNA Nucleases,DNase, Acid,DNase, Alkaline
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004854 Herpesvirus 4, Human The type species of LYMPHOCRYPTOVIRUS, subfamily GAMMAHERPESVIRINAE, infecting B-cells in humans. It is thought to be the causative agent of INFECTIOUS MONONUCLEOSIS and is strongly associated with oral hairy leukoplakia (LEUKOPLAKIA, HAIRY;), BURKITT LYMPHOMA; and other malignancies. Burkitt Herpesvirus,Burkitt Lymphoma Virus,E-B Virus,EBV,Epstein-Barr Virus,Human Herpesvirus 4,Infectious Mononucleosis Virus,Burkitt's Lymphoma Virus,HHV-4,Herpesvirus 4 (gamma), Human,Burkitts Lymphoma Virus,E B Virus,E-B Viruses,Epstein Barr Virus,Herpesvirus, Burkitt,Infectious Mononucleosis Viruses,Lymphoma Virus, Burkitt,Mononucleosis Virus, Infectious,Mononucleosis Viruses, Infectious
D005092 Exonucleases Enzymes that catalyze the release of mononucleotides by the hydrolysis of the terminal bond of deoxyribonucleotide or ribonucleotide chains. Exonuclease,3'-5'-Exonuclease,3'-5'-Exonucleases,5'-3'-Exonuclease,5'-3'-Exonucleases,3' 5' Exonuclease,3' 5' Exonucleases,5' 3' Exonuclease,5' 3' Exonucleases

Related Publications

S D Hayward, and E Kieff
July 1980, Proceedings of the National Academy of Sciences of the United States of America,
S D Hayward, and E Kieff
January 2001, Methods in molecular biology (Clifton, N.J.),
S D Hayward, and E Kieff
May 1980, Proceedings of the National Academy of Sciences of the United States of America,
S D Hayward, and E Kieff
January 1984, Nature,
S D Hayward, and E Kieff
June 1979, Biomedicine / [publiee pour l'A.A.I.C.I.G.],
Copied contents to your clipboard!