The electrostatic potential of Escherichia coli dihydrofolate reductase. 1991

J Bajorath, and D H Kitson, and J Kraut, and A T Hagler
Biosym Technologies, Inc., San Diego, California 92121.

Escherichia coli dihydrofolate reductase (DHFR) carries a net charge of -10 electrons yet it binds ligands with net charges of -4 (NADPH) and -2 (folate or dihydrofolate). Evaluation and analysis of the electrostatic potential of the enzyme give insight as to how this is accomplished. The results show that the enzyme is covered by an overall negative potential (as expected) except for the ligand binding sites, which are located inside "pockets" of positive potential that enable the enzyme to bind the negatively charged ligands. The electrostatic potential can be related to the asymmetric distribution of charged residues in the enzyme. The asymmetric charge distribution, along with the dielectric boundary that occurs at the solvent-protein interface, is analogous to the situation occurring in superoxide dismutase. Thus DHFR is another case where the shape of the active site focuses electric fields out into solution. The positive electrostatic potential at the entrance of the ligand binding site in E. coli DHFR is shown to be a direct consequence of the presence of three positively charged residues at positions 32, 52, and 57--residues which have also been shown recently to contribute significantly to electronic polarization of the ligand folate. The latter has been postulated to be involved in the catalytic process. A similar structural motif of three positively charged amino acids that gives rise to a positive potential at the entrance to the active site is also found in DHFR from chicken liver, and is suggested to be a common feature in DHFRs from many species. It is noted that, although the net charges of DHFRs from different species vary from +3 to -10, the enzymes are able to bind the same negatively charged ligands, and perform the same catalytic function.

UI MeSH Term Description Entries
D008432 Mathematical Computing Computer-assisted interpretation and analysis of various mathematical functions related to a particular problem. Statistical Computing,Computing, Statistical,Mathematic Computing,Statistical Programs, Computer Based,Computing, Mathematic,Computing, Mathematical,Computings, Mathematic,Computings, Mathematical,Computings, Statistical,Mathematic Computings,Mathematical Computings,Statistical Computings
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D002627 Chemistry, Physical The study of CHEMICAL PHENOMENA and processes in terms of the underlying PHYSICAL PHENOMENA and processes. Physical Chemistry,Chemistries, Physical,Physical Chemistries
D003196 Computer Graphics The process of pictorial communication, between human and computers, in which the computer input and output have the form of charts, drawings, or other appropriate pictorial representation. Computer Graphic,Graphic, Computer,Graphics, Computer
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012996 Solutions The homogeneous mixtures formed by the mixing of a solid, liquid, or gaseous substance (solute) with a liquid (the solvent), from which the dissolved substances can be recovered by physical processes. (From Grant & Hackh's Chemical Dictionary, 5th ed) Solution

Related Publications

J Bajorath, and D H Kitson, and J Kraut, and A T Hagler
October 1998, Journal of biochemistry,
J Bajorath, and D H Kitson, and J Kraut, and A T Hagler
September 1986, Biochemistry,
J Bajorath, and D H Kitson, and J Kraut, and A T Hagler
August 1981, Biochimica et biophysica acta,
J Bajorath, and D H Kitson, and J Kraut, and A T Hagler
October 1992, Biological chemistry Hoppe-Seyler,
J Bajorath, and D H Kitson, and J Kraut, and A T Hagler
March 2000, The international journal of biochemistry & cell biology,
J Bajorath, and D H Kitson, and J Kraut, and A T Hagler
August 1979, Molecular & general genetics : MGG,
J Bajorath, and D H Kitson, and J Kraut, and A T Hagler
December 1975, Biochemistry,
J Bajorath, and D H Kitson, and J Kraut, and A T Hagler
May 1974, The Journal of biological chemistry,
J Bajorath, and D H Kitson, and J Kraut, and A T Hagler
November 1987, The Journal of biological chemistry,
J Bajorath, and D H Kitson, and J Kraut, and A T Hagler
April 1982, Journal of biochemistry,
Copied contents to your clipboard!