Glucagon-like peptide-2 modulates neurally evoked mucosal chloride secretion in guinea pig small intestine in vitro. 2009

Sara Baldassano, and Sumei Liu, and Mei-Hu Qu, and Flavia Mulè, and Jackie D Wood
Departments of Physiology and Cell Biology, Ohio State University College of Medicine, Columbus, Ohio 43210-1218, USA.

Glucagon-like peptide-2 (GLP-2) is an important neuroendocrine peptide in intestinal physiology. It influences digestion, absorption, epithelial growth, motility, and blood flow. We studied involvement of GLP-2 in intestinal mucosal secretory behavior. Submucosal-mucosal preparations from guinea pig ileum were mounted in Ussing chambers for measurement of short-circuit current (I(sc)) as a surrogate for chloride secretion. GLP-2 action on neuronal release of acetylcholine was determined with ELISA. Enteric neuronal expression of the GLP-2 receptor (GLP-2R) was studied with immunohistochemical methods. Application of GLP-2 (0.1-100 nM) to the serosal or mucosal side of the preparations evoked no change in baseline I(sc) and did not alter transepithelial ionic conductance. Transmural electrical field stimulation (EFS) evoked characteristic biphasic increases in I(sc), with an initially rapid rising phase followed by a sustained phase. Application of GLP-2 reduced the EFS-evoked biphasic responses in a concentration-dependent manner. The GLP-2R antagonist GLP-2-(3-33) significantly reversed suppression of the EFS-evoked responses by GLP-2. Tetrodotoxin, scopolamine, and hexamethonium, but not vasoactive intestinal peptide type 1 receptor (VPAC1) antagonist abolished or reduced to near zero the EFS-evoked responses. GLP-2 suppressed EFS-evoked acetylcholine release as measured by ELISA. Pretreatment with GLP-2-(3-33) offset this action of GLP-2. In the submucosal plexus, GLP-2R immunoreactivity (-IR) was expressed in choline acetyltransferase-IR neurons, somatostatin-IR neurons, neuropeptide Y-IR neurons, and vasoactive intestinal peptide-IR neurons. We conclude that submucosal neurons in the guinea pig ileum express GLP-2R. Activation of GLP-2R decreases neuronally evoked epithelial chloride secretion by suppressing acetylcholine release from secretomotor neurons.

UI MeSH Term Description Entries
D007082 Ileum The distal and narrowest portion of the SMALL INTESTINE, between the JEJUNUM and the ILEOCECAL VALVE of the LARGE INTESTINE.
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D007419 Intestinal Secretions Fluids originating from the epithelial lining of the intestines, adjoining exocrine glands and from organs such as the liver, which empty into the cavity of the intestines. Intestinal Secretion,Secretion, Intestinal,Secretions, Intestinal
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009478 Neuropeptide Y A 36-amino acid peptide present in many organs and in many sympathetic noradrenergic neurons. It has vasoconstrictor and natriuretic activity and regulates local blood flow, glandular secretion, and smooth muscle activity. The peptide also stimulates feeding and drinking behavior and influences secretion of pituitary hormones. Neuropeptide Y-Like Immunoreactive Peptide,Neuropeptide Tyrosine,Neuropeptide Y Like Immunoreactive Peptide,Tyrosine, Neuropeptide
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D002795 Choline O-Acetyltransferase An enzyme that catalyzes the formation of acetylcholine from acetyl-CoA and choline. EC 2.3.1.6. Choline Acetylase,Choline Acetyltransferase,Acetylase, Choline,Acetyltransferase, Choline,Choline O Acetyltransferase,O-Acetyltransferase, Choline
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical

Related Publications

Sara Baldassano, and Sumei Liu, and Mei-Hu Qu, and Flavia Mulè, and Jackie D Wood
February 2012, American journal of physiology. Gastrointestinal and liver physiology,
Sara Baldassano, and Sumei Liu, and Mei-Hu Qu, and Flavia Mulè, and Jackie D Wood
February 2016, World journal of gastrointestinal pathophysiology,
Sara Baldassano, and Sumei Liu, and Mei-Hu Qu, and Flavia Mulè, and Jackie D Wood
December 2000, Autonomic neuroscience : basic & clinical,
Sara Baldassano, and Sumei Liu, and Mei-Hu Qu, and Flavia Mulè, and Jackie D Wood
April 1989, FEBS letters,
Sara Baldassano, and Sumei Liu, and Mei-Hu Qu, and Flavia Mulè, and Jackie D Wood
August 1989, The Journal of biological chemistry,
Sara Baldassano, and Sumei Liu, and Mei-Hu Qu, and Flavia Mulè, and Jackie D Wood
May 2002, Anatomy and embryology,
Sara Baldassano, and Sumei Liu, and Mei-Hu Qu, and Flavia Mulè, and Jackie D Wood
April 2009, American journal of physiology. Gastrointestinal and liver physiology,
Sara Baldassano, and Sumei Liu, and Mei-Hu Qu, and Flavia Mulè, and Jackie D Wood
July 2012, Cancer chemotherapy and pharmacology,
Sara Baldassano, and Sumei Liu, and Mei-Hu Qu, and Flavia Mulè, and Jackie D Wood
May 1990, European journal of pharmacology,
Sara Baldassano, and Sumei Liu, and Mei-Hu Qu, and Flavia Mulè, and Jackie D Wood
January 2019, Biological & pharmaceutical bulletin,
Copied contents to your clipboard!