Effects of acetaldehyde on electrical activity during neuroeffector transmission in guinea-pig vas deferens. 1990

R Takeda, and Y Momose, and A Haji
Department of Pharmacology, Faculty of Medicine, Toyama Medical and Pharmaceutical University, Japan.

The effects of acetaldehyde on electrical activity during sympathetic neuroeffector transmission were studied in the guinea-pig vas deferens. Application of 1 mM acetaldehyde produced a slow depolarization of the smooth muscle membrane. The amplitudes of facilitated excitatory junction potentials (EJPs) evoked by nerve stimulation were slightly decreased. A higher concentration of acetaldehyde (5 mM) initially hyperpolarized and later depolarized the membrane. The decrease in EJP amplitudes was more pronounced during hyperpolarization. Acetaldehyde (5 mM) increased the frequency of the spontaneous EJPs and reduced their amplitudes, whereas action potentials in postganglionic nerves were unaffected. Acetaldehyde (1-5 mM) decreased the amplitudes of EJPs in vasa pretreated with reserpine but did not alter the resting membrane potentials. The decrease in the EJP amplitudes together with the hyperpolarization of the membrane could be responsible for the early inhibitory effect of acetaldehyde on neuroeffector transmission. The slow depolarization, which is presumably mediated by endogenous noradrenaline, may cause the late facilitatory effect.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009451 Neuroeffector Junction The synapse between a neuron (presynaptic) and an effector cell other than another neuron (postsynaptic). Neuroeffector junctions include synapses onto muscles and onto secretory cells. Junction, Neuroeffector,Junctions, Neuroeffector,Neuroeffector Junctions
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D012110 Reserpine An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. Reserpine inhibits the uptake of norepinephrine into storage vesicles resulting in depletion of catecholamines and serotonin from central and peripheral axon terminals. It has been used as an antihypertensive and an antipsychotic as well as a research tool, but its adverse effects limit its clinical use. Raunervil,Raupasil,Rausedil,Rausedyl,Serpasil,Serpivite,V-Serp,V Serp
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000079 Acetaldehyde A colorless, flammable liquid used in the manufacture of acetic acid, perfumes, and flavors. It is also an intermediate in the metabolism of alcohol. It has a general narcotic action and also causes irritation of mucous membranes. Large doses may cause death from respiratory paralysis. Ethanal
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential

Related Publications

R Takeda, and Y Momose, and A Haji
May 1988, The Journal of physiology,
R Takeda, and Y Momose, and A Haji
August 1990, European journal of pharmacology,
R Takeda, and Y Momose, and A Haji
February 1997, British journal of pharmacology,
R Takeda, and Y Momose, and A Haji
June 1989, Clinical and experimental pharmacology & physiology,
R Takeda, and Y Momose, and A Haji
January 1994, Acta physiologica Scandinavica,
R Takeda, and Y Momose, and A Haji
January 1990, Toxicon : official journal of the International Society on Toxinology,
R Takeda, and Y Momose, and A Haji
March 1980, British journal of pharmacology,
R Takeda, and Y Momose, and A Haji
March 1972, Nature: New biology,
R Takeda, and Y Momose, and A Haji
August 2001, The Journal of pharmacology and experimental therapeutics,
R Takeda, and Y Momose, and A Haji
November 2000, British journal of pharmacology,
Copied contents to your clipboard!