Dual-task interference: attentional and neurophysiological influences. 2009

Cynthia Y Hiraga, and Michael I Garry, and Richard G Carson, and Jeffery J Summers
Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av Arlindo Bétio, 1000, Ermelino Matarazzo, São Paulo-SP, CEP 03828-000, Brazil.

Performing two tasks simultaneously often degrades performance of one or both tasks. While this dual-task interference is classically interpreted in terms of shared attentional resources, where two motor tasks are performed simultaneously interactions within primary motor cortex (i.e., activity-dependent coupling) may also be a contributing factor. In the present study TMS (transcranial magnetic stimulation) was used to examine the contribution of activity-dependent coupling to dual-task interference during concurrent performance of a bimanual coordination task and a discrete probe reaction time (RT) task involving the foot. Experiments 1 and 2 revealed that activity-dependent coupling within the leg corticomotor pathway was greater during dual-task performance than single-task performance, and this was associated with interference on the probe RT task (i.e., increased RT). Experiment 3 revealed that dual-task interference occurred regardless of whether the dual-task involved two motor tasks or a motor and cognitive task, however activity-dependent coupling was present only when a dual motor task was performed. This suggests that activity-dependent coupling is less detrimental to performance than attentional processes operating upstream of the corticomotor system. Finally, while prioritising the RT task reduced, but did not eliminate, dual-task interference the contribution of activity-dependent coupling to dual-task interference was not affected by task prioritisation. This suggests that although activity-dependent coupling may contribute to dual motor-task interference, attentional processes appear to be more important. It also suggests that activity-dependent coupling may not be subject to modulation by attentional processes.

UI MeSH Term Description Entries
D008297 Male Males
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D009483 Neuropsychological Tests Tests designed to assess neurological function associated with certain behaviors. They are used in diagnosing brain dysfunction or damage and central nervous system disorders or injury. Aphasia Tests,Cognitive Test,Cognitive Testing,Cognitive Tests,Memory for Designs Test,Neuropsychological Testing,AX-CPT,Behavioral Assessment of Dysexecutive Syndrome,CANTAB,Cambridge Neuropsychological Test Automated Battery,Clock Test,Cognitive Function Scanner,Continuous Performance Task,Controlled Oral Word Association Test,Delis-Kaplan Executive Function System,Developmental Neuropsychological Assessment,Hooper Visual Organization Test,NEPSY,Neuropsychologic Tests,Neuropsychological Test,Paced Auditory Serial Addition Test,Repeatable Battery for the Assessment of Neuropsychological Status,Rey-Osterrieth Complex Figure,Symbol Digit Modalities Test,Test of Everyday Attention,Test, Neuropsychological,Tests, Neuropsychological,Tower of London Test,Neuropsychologic Test,Test, Cognitive,Testing, Cognitive,Testing, Neuropsychological,Tests, Cognitive
D011597 Psychomotor Performance The coordination of a sensory or ideational (cognitive) process and a motor activity. Perceptual Motor Performance,Sensory Motor Performance,Visual Motor Coordination,Coordination, Visual Motor,Coordinations, Visual Motor,Motor Coordination, Visual,Motor Coordinations, Visual,Motor Performance, Perceptual,Motor Performance, Sensory,Motor Performances, Perceptual,Motor Performances, Sensory,Perceptual Motor Performances,Performance, Perceptual Motor,Performance, Psychomotor,Performance, Sensory Motor,Performances, Perceptual Motor,Performances, Psychomotor,Performances, Sensory Motor,Psychomotor Performances,Sensory Motor Performances,Visual Motor Coordinations
D011712 Pyramidal Tracts Fibers that arise from cells within the cerebral cortex, pass through the medullary pyramid, and descend in the spinal cord. Many authorities say the pyramidal tracts include both the corticospinal and corticobulbar tracts. Corticobulbar Tracts,Corticospinal Tracts,Decussation, Pyramidal,Corticobulbar Tract,Corticospinal Tract,Pyramidal Decussation,Pyramidal Tract,Tract, Corticobulbar,Tract, Corticospinal,Tract, Pyramidal,Tracts, Corticobulbar,Tracts, Corticospinal,Tracts, Pyramidal
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D003071 Cognition Intellectual or mental process whereby an organism obtains knowledge. Cognitive Function,Cognitions,Cognitive Functions,Function, Cognitive,Functions, Cognitive
D004576 Electromyography Recording of the changes in electric potential of muscle by means of surface or needle electrodes. Electromyogram,Surface Electromyography,Electromyograms,Electromyographies,Electromyographies, Surface,Electromyography, Surface,Surface Electromyographies
D005260 Female Females

Related Publications

Cynthia Y Hiraga, and Michael I Garry, and Richard G Carson, and Jeffery J Summers
January 2015, PloS one,
Cynthia Y Hiraga, and Michael I Garry, and Richard G Carson, and Jeffery J Summers
October 2023, Quarterly journal of experimental psychology (2006),
Cynthia Y Hiraga, and Michael I Garry, and Richard G Carson, and Jeffery J Summers
April 1984, Journal of experimental psychology. Human perception and performance,
Cynthia Y Hiraga, and Michael I Garry, and Richard G Carson, and Jeffery J Summers
January 2019, Cognitive neuropsychology,
Cynthia Y Hiraga, and Michael I Garry, and Richard G Carson, and Jeffery J Summers
July 2020, Medicine,
Cynthia Y Hiraga, and Michael I Garry, and Richard G Carson, and Jeffery J Summers
May 2024, Multiple sclerosis and related disorders,
Cynthia Y Hiraga, and Michael I Garry, and Richard G Carson, and Jeffery J Summers
February 1993, The Quarterly journal of experimental psychology. A, Human experimental psychology,
Cynthia Y Hiraga, and Michael I Garry, and Richard G Carson, and Jeffery J Summers
August 1997, Cognitive psychology,
Cynthia Y Hiraga, and Michael I Garry, and Richard G Carson, and Jeffery J Summers
April 1993, Journal of experimental psychology. Human perception and performance,
Cynthia Y Hiraga, and Michael I Garry, and Richard G Carson, and Jeffery J Summers
July 2023, Motor control,
Copied contents to your clipboard!