Mutants of Escherichia coli K-12 exhibiting reduced killing by both quinolone and beta-lactam antimicrobial agents. 1990

J S Wolfson, and D C Hooper, and G L McHugh, and M A Bozza, and M N Swartz
Infectious Disease Unit, Medical Services, Massachusetts General Hospital, Boston.

Norfloxacin, ofloxacin, and other new quinolones, which are antagonists of the enzyme DNA gyrase, rapidly kill bacteria by largely unknown mechanisms. Earlier, we isolated, after mutagenesis, Escherichia coli DS1, which exhibited reduced killing by quinolones. We evaluated the killing of DS1 and several other strains by quinolones and beta-lactams. In time-killing studies with norfloxacin, DS1 was killed 1 to 2 log10 units compared to 4 to 5 log10 units for the wild-type parent strain KL16, thus revealing that DS1 is a high-persistence (hip) mutant. DS1 exhibited a similar high-persistence pattern for the beta-lactam ampicillin and reduced killing by drugs that differed in their affinities for penicillin-binding proteins, including cefoxitin, cefsulodin, imipenem, mecillinam, and piperacillin. Conjugation and P1 transduction studies identified a novel mutant locus (termed hipQ) in the 2-min region of the DS1 chromosome necessary for reduced killing by norfloxacin and ampicillin. E. coli KL500, which was isolated for reduced killing by norfloxacin without mutagenesis, exhibited reduced killing by ampicillin. E. coli HM23, a hipA (34 min) mutant that was isolated earlier for reduced killing by ampicillin, also exhibited high persistence to norfloxacin. DS1 differed from HM23, however, in the map location of its hip mutation, lack of cold sensitivity, and reduced killing by coumermycin. Results of these studies with strains DS1, KL500, and HM23 demonstrate overlap in the pathways of killing of E. coli by quinolones and beta-lactams and identify hipQ, a new mutant locus that is involved in a high-persistence pattern of reduced killing by norfloxacin and ampicillin.

UI MeSH Term Description Entries
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D003227 Conjugation, Genetic A parasexual process in BACTERIA; ALGAE; FUNGI; and ciliate EUKARYOTA for achieving exchange of chromosome material during fusion of two cells. In bacteria, this is a uni-directional transfer of genetic material; in protozoa it is a bi-directional exchange. In algae and fungi, it is a form of sexual reproduction, with the union of male and female gametes. Bacterial Conjugation,Conjugation, Bacterial,Genetic Conjugation
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D015363 Quinolones A group of derivatives of naphthyridine carboxylic acid, quinoline carboxylic acid, or NALIDIXIC ACID. Ketoquinoline,Ketoquinolines,Oxoquinoline,Oxoquinolines,Quinolinone,Quinolinones,Quinolone
D047090 beta-Lactams Four-membered cyclic AMIDES, best known for the PENICILLINS based on a bicyclo-thiazolidine, as well as the CEPHALOSPORINS based on a bicyclo-thiazine, and including monocyclic MONOBACTAMS. The BETA-LACTAMASES hydrolyze the beta lactam ring, accounting for BETA-LACTAM RESISTANCE of infective bacteria. beta-Lactam,4-Thia-1-Azabicyclo(3.2.0)Heptanes,4-Thia-1-Azabicyclo(4.2.0)Octanes,beta Lactam,beta Lactams

Related Publications

J S Wolfson, and D C Hooper, and G L McHugh, and M A Bozza, and M N Swartz
April 1983, Antimicrobial agents and chemotherapy,
J S Wolfson, and D C Hooper, and G L McHugh, and M A Bozza, and M N Swartz
September 1980, Nihon saikingaku zasshi. Japanese journal of bacteriology,
J S Wolfson, and D C Hooper, and G L McHugh, and M A Bozza, and M N Swartz
February 1987, Journal of bacteriology,
J S Wolfson, and D C Hooper, and G L McHugh, and M A Bozza, and M N Swartz
December 1977, Journal of bacteriology,
J S Wolfson, and D C Hooper, and G L McHugh, and M A Bozza, and M N Swartz
October 1952, Archives of biochemistry and biophysics,
J S Wolfson, and D C Hooper, and G L McHugh, and M A Bozza, and M N Swartz
April 2000, Journal of bacteriology,
J S Wolfson, and D C Hooper, and G L McHugh, and M A Bozza, and M N Swartz
November 1971, Journal of bacteriology,
J S Wolfson, and D C Hooper, and G L McHugh, and M A Bozza, and M N Swartz
December 1979, Journal of bacteriology,
J S Wolfson, and D C Hooper, and G L McHugh, and M A Bozza, and M N Swartz
August 1985, The Journal of antimicrobial chemotherapy,
J S Wolfson, and D C Hooper, and G L McHugh, and M A Bozza, and M N Swartz
January 1984, Journal of bacteriology,
Copied contents to your clipboard!