Maximum likelihood decoding of neuronal inputs from an interspike interval distribution. 2009

Xuejuan Zhang, and Gongqiang You, and Tianping Chen, and Jianfeng Feng
Mathematical Department, Zhejiang Normal University, Jinhua, PR China. xuejuanzhang@gmail.com

An expression for the probability distribution of the interspike interval of a leaky integrate-and-fire (LIF) model neuron is rigorously derived, based on recent theoretical developments in the theory of stochastic processes. This enables us to find for the first time a way of developing maximum likelihood estimates (MLE) of the input information (e.g., afferent rate and variance) for an LIF neuron from a set of recorded spike trains. Dynamic inputs to pools of LIF neurons both with and without interactions are efficiently and reliably decoded by applying the MLE, even within time windows as short as 25 msec.

UI MeSH Term Description Entries
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009010 Monte Carlo Method In statistics, a technique for numerically approximating the solution of a mathematical problem by studying the distribution of some random variable, often generated by a computer. The name alludes to the randomness characteristic of the games of chance played at the gambling casinos in Monte Carlo. (From Random House Unabridged Dictionary, 2d ed, 1993) Method, Monte Carlo
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011336 Probability The study of chance processes or the relative frequency characterizing a chance process. Probabilities
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D016013 Likelihood Functions Functions constructed from a statistical model and a set of observed data which give the probability of that data for various values of the unknown model parameters. Those parameter values that maximize the probability are the maximum likelihood estimates of the parameters. Likelihood Ratio Test,Maximum Likelihood Estimates,Estimate, Maximum Likelihood,Estimates, Maximum Likelihood,Function, Likelihood,Functions, Likelihood,Likelihood Function,Maximum Likelihood Estimate,Test, Likelihood Ratio
D019706 Excitatory Postsynaptic Potentials Depolarization of membrane potentials at the SYNAPTIC MEMBRANES of target neurons during neurotransmission. Excitatory postsynaptic potentials can singly or in summation reach the trigger threshold for ACTION POTENTIALS. EPSP,End Plate Potentials,Excitatory Postsynaptic Currents,Current, Excitatory Postsynaptic,Currents, Excitatory Postsynaptic,End Plate Potential,Excitatory Postsynaptic Current,Excitatory Postsynaptic Potential,Plate Potential, End,Plate Potentials, End,Postsynaptic Current, Excitatory,Postsynaptic Currents, Excitatory,Postsynaptic Potential, Excitatory,Postsynaptic Potentials, Excitatory,Potential, End Plate,Potential, Excitatory Postsynaptic,Potentials, End Plate,Potentials, Excitatory Postsynaptic

Related Publications

Xuejuan Zhang, and Gongqiang You, and Tianping Chen, and Jianfeng Feng
April 2002, Neural computation,
Xuejuan Zhang, and Gongqiang You, and Tianping Chen, and Jianfeng Feng
July 2009, Physical review. E, Statistical, nonlinear, and soft matter physics,
Xuejuan Zhang, and Gongqiang You, and Tianping Chen, and Jianfeng Feng
July 2011, Journal of neurophysiology,
Xuejuan Zhang, and Gongqiang You, and Tianping Chen, and Jianfeng Feng
March 2010, IEEE transactions on bio-medical engineering,
Xuejuan Zhang, and Gongqiang You, and Tianping Chen, and Jianfeng Feng
November 1985, Journal of applied physiology (Bethesda, Md. : 1985),
Xuejuan Zhang, and Gongqiang You, and Tianping Chen, and Jianfeng Feng
November 2002, Network (Bristol, England),
Xuejuan Zhang, and Gongqiang You, and Tianping Chen, and Jianfeng Feng
June 2016, Mathematical biosciences and engineering : MBE,
Xuejuan Zhang, and Gongqiang You, and Tianping Chen, and Jianfeng Feng
February 1979, Experientia,
Xuejuan Zhang, and Gongqiang You, and Tianping Chen, and Jianfeng Feng
July 2006, Journal of neuroscience methods,
Xuejuan Zhang, and Gongqiang You, and Tianping Chen, and Jianfeng Feng
June 1998, IEEE transactions on medical imaging,
Copied contents to your clipboard!