Identification of finasteride metabolites in human bile and urine by high-performance liquid chromatography/tandem mass spectrometry. 2009

Anna Lundahl, and Hans Lennernäs, and Lars Knutson, and Ulf Bondesson, and Mikael Hedeland
Department of Pharmacy, Uppsala University, Sweden.

The objective of this study was to further investigate the metabolism of the 5alpha-reductase inhibitor, finasteride, and to identify previously unknown phase I and phase II metabolites in vitro and in vivo in human bile and urine. Healthy volunteers were given 5 mg of finasteride, directly to the intestine, and bile and urine were collected for 3 and 24 h, respectively. A single-pass perfusion technique, Loc-I-Gut, was used for drug administration and bile collection from the proximal jejunum, distal to papilla of Vater. Incubations with human liver microsomes/S9 fractions and different cofactors were performed with finasteride and the previously known metabolites, omega-hydroxy finasteride (M1) and finasteride-omega-oic acid (M3). Liquid chromatography coupled to triple quadrupole mass spectrometry (MS) with positive/negative electrospray ionization and ion trap with MS(n) measurements were used for structural investigations and identification of metabolites. Two hydroxy metabolites of finasteride, other than M1, and one intact hydroxy finasteride glucuronide were identified in vitro and in bile and urine. The glucuronide and at least one of the hydroxy metabolites were previously unidentified. M1 and M3 were glucuronidated in vitro by specific human UDP-glucuronosyltransferases, UGT1A4 and UGT1A3, respectively. M1 glucuronide was not identified in vivo, and M3 glucuronide, an acyl glucuronide, was present in low amounts in bile from a few individuals. In conclusion, previously undescribed metabolites were identified, in vitro and in human urine and bile. Bile collection using the Loc-I-Gut technique followed by sensitive mass spectrometry analysis led to the discovery of novel, both phase I and phase II, finasteride metabolites in human bile.

UI MeSH Term Description Entries
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001646 Bile An emulsifying agent produced in the LIVER and secreted into the DUODENUM. Its composition includes BILE ACIDS AND SALTS; CHOLESTEROL; and ELECTROLYTES. It aids DIGESTION of fats in the duodenum. Biliary Sludge,Sludge, Biliary
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D014453 Glucuronosyltransferase A family of enzymes accepting a wide range of substrates, including phenols, alcohols, amines, and fatty acids. They function as drug-metabolizing enzymes that catalyze the conjugation of UDPglucuronic acid to a variety of endogenous and exogenous compounds. EC 2.4.1.17. Glucuronyltransferase,UDP Glucuronosyltransferase,17 beta-Hydroxysteroid UDP-Glucuronosyltransferase,4-Nitrophenol-UDP-Glucuronosyltransferase,7-Hydroxycoumarin UDP Glucuronyltransferase,Androsterone UDP-Glucuronosyltransferase,Bilirubin UDP-Glucuronyltransferase,Estrogen UDP-Glucuronosyltransferase,Estrone Glucuronyltransferase,Glucuronic Transferase,Morphine Glucuronyltransferase,UDP Glucuronyl Transferase,UDP-Glucuronic Acid 3-O-beta-D-Galactosyl-D-Galactose Glucuronosyltransferase,p-Nitrophenyl UDP-Glucuronosyltransferase,17 beta Hydroxysteroid UDP Glucuronosyltransferase,4 Nitrophenol UDP Glucuronosyltransferase,7 Hydroxycoumarin UDP Glucuronyltransferase,Androsterone UDP Glucuronosyltransferase,Bilirubin UDP Glucuronyltransferase,Estrogen UDP Glucuronosyltransferase,Glucuronosyltransferase, UDP,Glucuronyl Transferase, UDP,Glucuronyltransferase, 7-Hydroxycoumarin UDP,Glucuronyltransferase, Estrone,Glucuronyltransferase, Morphine,Transferase, Glucuronic,Transferase, UDP Glucuronyl,UDP Glucuronic Acid 3 O beta D Galactosyl D Galactose Glucuronosyltransferase,UDP Glucuronyltransferase, 7-Hydroxycoumarin,UDP-Glucuronosyltransferase, 17 beta-Hydroxysteroid,UDP-Glucuronosyltransferase, Androsterone,UDP-Glucuronosyltransferase, Estrogen,UDP-Glucuronosyltransferase, p-Nitrophenyl,UDP-Glucuronyltransferase, Bilirubin,p Nitrophenyl UDP Glucuronosyltransferase
D053719 Tandem Mass Spectrometry A mass spectrometry technique using two (MS/MS) or more mass analyzers. With two in tandem, the precursor ions are mass-selected by a first mass analyzer, and focused into a collision region where they are then fragmented into product ions which are then characterized by a second mass analyzer. A variety of techniques are used to separate the compounds, ionize them, and introduce them to the first mass analyzer. For example, for in GC-MS/MS, GAS CHROMATOGRAPHY-MASS SPECTROMETRY is involved in separating relatively small compounds by GAS CHROMATOGRAPHY prior to injecting them into an ionization chamber for the mass selection. Mass Spectrometry-Mass Spectrometry,Mass Spectrometry Mass Spectrometry,Mass Spectrometry, Tandem
D018120 Finasteride An orally active 3-OXO-5-ALPHA-STEROID 4-DEHYDROGENASE inhibitor. It is used as a surgical alternative for treatment of benign PROSTATIC HYPERPLASIA. Chibro-Proscar,Eucoprost,MK-906,Propecia,Propeshia,Proscar,Chibro Proscar,MK 906,MK906
D020719 Glucuronides Glycosides of GLUCURONIC ACID formed by the reaction of URIDINE DIPHOSPHATE GLUCURONIC ACID with certain endogenous and exogenous substances. Their formation is important for the detoxification of drugs, steroid excretion and BILIRUBIN metabolism to a more water-soluble compound that can be eliminated in the URINE and BILE. Glucuronide

Related Publications

Anna Lundahl, and Hans Lennernäs, and Lars Knutson, and Ulf Bondesson, and Mikael Hedeland
June 2012, Drug testing and analysis,
Anna Lundahl, and Hans Lennernäs, and Lars Knutson, and Ulf Bondesson, and Mikael Hedeland
June 2015, Se pu = Chinese journal of chromatography,
Anna Lundahl, and Hans Lennernäs, and Lars Knutson, and Ulf Bondesson, and Mikael Hedeland
March 1985, Journal of chromatography,
Anna Lundahl, and Hans Lennernäs, and Lars Knutson, and Ulf Bondesson, and Mikael Hedeland
November 2012, Yao xue xue bao = Acta pharmaceutica Sinica,
Anna Lundahl, and Hans Lennernäs, and Lars Knutson, and Ulf Bondesson, and Mikael Hedeland
August 2018, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences,
Anna Lundahl, and Hans Lennernäs, and Lars Knutson, and Ulf Bondesson, and Mikael Hedeland
April 2010, Biomedical chromatography : BMC,
Anna Lundahl, and Hans Lennernäs, and Lars Knutson, and Ulf Bondesson, and Mikael Hedeland
January 2003, Rapid communications in mass spectrometry : RCM,
Anna Lundahl, and Hans Lennernäs, and Lars Knutson, and Ulf Bondesson, and Mikael Hedeland
January 2000, Rapid communications in mass spectrometry : RCM,
Anna Lundahl, and Hans Lennernäs, and Lars Knutson, and Ulf Bondesson, and Mikael Hedeland
August 2009, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences,
Anna Lundahl, and Hans Lennernäs, and Lars Knutson, and Ulf Bondesson, and Mikael Hedeland
July 2007, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences,
Copied contents to your clipboard!