Effects of continuous diazepam administration on GABAA subunit mRNA in rat brain. 1990

C Heninger, and N Saito, and J F Tallman, and K M Garrett, and M P Vitek, and R S Duman, and D W Gallager
Department of Psychiatry, Yale University School of Medicine, New Haven, CT.

Rats treated chronically with diazepam develop tolerance to diazepam effects and show changes in sensitivity of GABAergic systems. In order to investigate possible molecular mechanisms associated with these changes, we have evaluated the effects of acute and chronic diazepam treatment on levels of mRNA for the alpha 1 and beta 1 subunits of the GABAA receptor. Northern blots were hybridized with 32P-labeled GABA alpha 1 and beta 1 cDNA probes, and resulting bands were quantified by autoradiography and densitometry. Levels of alpha 1 mRNA were significantly decreased in cerebral cortex but not in cerebellum or hippocampus of chronic diazepam-treated rats. Acute diazepam treatment did not change levels of alpha 1 mRNA in any of the brain regions. Levels of beta 1 mRNA were examined by Northern blot analysis and also by solution hybridization analysis using a 32P-labeled riboprobe. Both methods showed that beta 1 mRNA was not significantly changed by chronic diazepam treatment. These results demonstrate a specific change in alpha 1 subunit that is associated with a state of altered GABA sensitivity and provide further support for the regional heterogeneity of chronic diazepam effects.

UI MeSH Term Description Entries
D008297 Male Males
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D003864 Depression, Chemical The decrease in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical. Chemical Depression,Chemical Depressions,Depressions, Chemical
D003975 Diazepam A benzodiazepine with anticonvulsant, anxiolytic, sedative, muscle relaxant, and amnesic properties and a long duration of action. Its actions are mediated by enhancement of GAMMA-AMINOBUTYRIC ACID activity. 7-Chloro-1,3-dihydro-1-methyl-5-phenyl-2H-1,4-benzodiazepin-2-one,Apaurin,Diazemuls,Faustan,Relanium,Seduxen,Sibazon,Stesolid,Valium
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

C Heninger, and N Saito, and J F Tallman, and K M Garrett, and M P Vitek, and R S Duman, and D W Gallager
January 1992, Journal of psychopharmacology (Oxford, England),
C Heninger, and N Saito, and J F Tallman, and K M Garrett, and M P Vitek, and R S Duman, and D W Gallager
January 1996, Neuropharmacology,
C Heninger, and N Saito, and J F Tallman, and K M Garrett, and M P Vitek, and R S Duman, and D W Gallager
November 1988, Journal of neurochemistry,
C Heninger, and N Saito, and J F Tallman, and K M Garrett, and M P Vitek, and R S Duman, and D W Gallager
October 1993, European journal of pharmacology,
C Heninger, and N Saito, and J F Tallman, and K M Garrett, and M P Vitek, and R S Duman, and D W Gallager
December 1990, Journal of neurobiology,
C Heninger, and N Saito, and J F Tallman, and K M Garrett, and M P Vitek, and R S Duman, and D W Gallager
June 1991, British journal of pharmacology,
C Heninger, and N Saito, and J F Tallman, and K M Garrett, and M P Vitek, and R S Duman, and D W Gallager
January 1987, Journal of neural transmission,
C Heninger, and N Saito, and J F Tallman, and K M Garrett, and M P Vitek, and R S Duman, and D W Gallager
July 1996, Brain research. Molecular brain research,
C Heninger, and N Saito, and J F Tallman, and K M Garrett, and M P Vitek, and R S Duman, and D W Gallager
December 2004, Neurochemistry international,
C Heninger, and N Saito, and J F Tallman, and K M Garrett, and M P Vitek, and R S Duman, and D W Gallager
January 1996, Neuropharmacology,
Copied contents to your clipboard!